设置机器人环境快速测试新开发的算法仍然是一个困难且耗时的过程。这给有兴趣执行现实世界机器人实验的研究人员带来了重大障碍。Robotio是一个旨在解决此问题的Python库。它着重于为机器人,抓地力和摄像机等提供常见,简单和结构化的Python接口。这些接口以及这些接口的实现为常见硬件提供了。此启用使用机器人的代码可以在不同的机器人设置上可移植。在建筑方面,Robotio旨在与OpenAI健身房环境以及ROS兼容。提供了这两种示例。该库与许多有用的工具一起融合在一起,例如相机校准脚本和情节记录功能,这些功能进一步支持算法开发。
translated by 谷歌翻译
为了在真实硬件平台上安全可靠的任何机器人控制器的安全部署,通常是在现实的仿真环境中使用特定机器人全面评估控制器的性能的必要练习。尽管有几种可以为此目的提供核心物理引擎的软件解决方案,但通常是繁琐且容易出错的努力,将模拟环境与机器人控制器进行评估。控制器可能具有一个复杂的结构,该结构由有限状态机(FSM)内的多个状态和过渡组成,甚至可能需要通过GUI输入。在这项工作中,我们提出了MC-Mujoco,这是一个开源软件框架,该框架在Mujoco Physics Simulator和MC-RTC机器人控制框架之间形成接口。我们提供实施详细信息,并描述为基本上任何新机器人提供支持的过程。我们还展示并发布了一个样品FSM控制器,用于通过Mujoco中的HRP-5P人形机器人对刚性对象进行两足球运动和稳定的抓握。 MC-Mujoco,已开发的机器人模块和FSM控制器的代码和使用说明可在线获得。
translated by 谷歌翻译
我们提出Dave Aquatic Virtual Environals(Dave),这是用于水下机器人,传感器和环境的开源仿真堆栈。传统的机器人模拟器并非旨在应对海洋环境带来的独特挑战,包括但不限于在空间和时间上变化的环境条件,受损或具有挑战性的感知以及在通常未探索的环境中数据的不可用。考虑到各种传感器和平台,对于不可避免地抵制更广泛采用的特定用例,车轮通常会重新发明。在现有模拟器的基础上,我们提供了一个框架,以帮助加快算法的开发和评估,否则这些算法需要在海上需要昂贵且耗时的操作。该框架包括基本的构建块(例如,新车,水跟踪多普勒速度记录仪,基于物理的多微型声纳)以及开发工具(例如,动态测深的产卵,洋流),使用户可以专注于方法论,而不是方法。比软件基础架构。我们通过示例场景,测深数据导入,数据检查的用户界面和操纵运动计划以及可视化来演示用法。
translated by 谷歌翻译
软件体系结构定义了大型计算系统的蓝图,因此是设计和开发工作的关键部分。在移动机器人的背景下,对此任务进行了广泛的探索,从而导致了大量参考设计和实现。由于软件体系结构定义了实现所有组件的框架,因此自然是移动机器人系统的一个非常重要的方面。在本章中,我们概述了特定问题域(移动机器人系统)对软件框架强加的要求。我们讨论了一些当前的设计解决方案,提供了有关共同框架的历史观点,并概述了未来发展的方向。
translated by 谷歌翻译
This paper gives an overview of ROS, an opensource robot operating system. ROS is not an operating system in the traditional sense of process management and scheduling; rather, it provides a structured communications layer above the host operating systems of a heterogenous compute cluster. In this paper, we discuss how ROS relates to existing robot software frameworks, and briefly overview some of the available application software which uses ROS.
translated by 谷歌翻译
即使是最强大的自主行为也可能失败。这项研究的目的是在自主任务执行期间恢复和从失败中收集数据,以便将来可以防止它们。我们建议对实时故障恢复和数据收集进行触觉干预。Elly是一个系统,可以在自主机器人行为和人类干预之间进行无缝过渡,同时从人类恢复策略中收集感觉信息。系统和我们的设计选择在单臂任务上进行了实验验证 - 在插座中安装灯泡 - 以及双层任务 - 拧上瓶盖的帽子 - 使用两个配备的4手指握把。在这些示例中,Elly在总共40次运行中实现了超过80%的任务完成。
translated by 谷歌翻译
人类的生活是无价的。当需要完成危险或威胁生命的任务时,机器人平台可能是更换人类运营商的理想选择。我们在这项工作中重点关注的任务是爆炸性的手段。鉴于移动机器人在多种环境中运行时表现出强大的功能,机器人触觉有可能提供安全解决方案。但是,与人类的运作相比,在此阶段,自主权可能具有挑战性和风险。远程运行可能是完整的机器人自主权和人类存在之间的折衷方案。在本文中,我们提出了一种相对便宜的解决方案,可用于远程敏感和机器人远程操作,以使用腿部操纵器(即,腿部四足机器人的机器人和RGB-D传感)来协助爆炸的军械处置。我们提出了一种新型的系统集成,以解决四足动物全身控制的非平凡问题。我们的系统基于可穿戴的基于IMU的运动捕获系统,该系统用于远程操作和视觉触发性的VR耳机。我们在实验中验证了现实世界中的方法,用于需要全身机器人控制和视觉触发的机车操作任务。
translated by 谷歌翻译
已知尝试构建自主机器人依赖复杂的控制架构,通常使用机器人操作系统平台(ROS)实现。在这些系统中需要运行时适应,以应对组件故障,并使用动态环境引起的突发事件 - 否则,这些系统会影响任务执行的可靠性和质量。关于如何在机器人中构建自适应系统的现有提案通常需要重大重新设计控制架构,并依赖于对机器人社区不熟悉的复杂工具。此外,它们很难重复使用应用程序。本文介绍了MRO:基于ROS的机器人控制架构的运行时调整的基于模型的框架。 MRO使用域特定语言的组合来模拟架构变体,并捕获任务质量问题,以及基于本体的Mape-K和Meta-Contoil Visions的运行时适应的愿望。在两个现实ROS的机器人示范器中施加MRO的实验结果在特派团执行的质量方面,展示了我们的方法的好处,以及机器人应用程序的MROS的可扩展性和可重复性。
translated by 谷歌翻译
机器人模拟一直是机器人领域研发的组成部分。模拟消除了通过启用机器人的应用测试来快速,负担得起的,而无需遭受机械或电子误差而进行机器人应用测试,从而消除了对传感器,电动机和实际机器人物理结构的可能性。通过虚拟现实(VR)模拟,通过提供更好的环境可视化提示,为与模拟机器人互动提供了更具吸引力的替代方法,从而提供了更严肃的体验。这种沉浸至关重要,尤其是在讨论社交机器人时,人类机器人相互作用(HRI)领域的子区域。在日常生活中,机器人的广泛使用取决于HRI。将来,机器人将能够与人们有效互动,以在人类文明中执行各种任务。在个人工作空间开始扩散时,为机器人开发简单且易于理解的接口至关重要。因此,在这项研究中,我们实施了一个使用现成的工具和包装的VR机器人框架,以增强社交HRI的研究和应用开发。由于整个VR接口是一个开源项目,因此可以在身临其境的环境中进行测试,而无需物理机器人。
translated by 谷歌翻译
RobowFlex是一个用于工业和研究应用程序机器人运动计划的软件库,利用流行的MoveIt库和机器人操作系统(ROS)中间件。 RobowFlex提供了一个增强的API,用于在单个程序中进行制作和操纵运动计划查询,从而使MoveIt的运动计划变得容易。 RobowFlex的高级API简化了许多常见的用例,同时仍可以在需要时提供对MoveIt库的低级访问。 RobOwFlex对于1)制定新运动计划者,2)评估运动计划者以及3)使用运动计划作为子例程(例如任务和运动计划)的复杂问题。 RobOwFlex还提供可视化功能,其他机器人库(例如Dart和Tesseract)的集成,并与其他机器人包互补。在我们的库中,用户无需成为ROS或MoveIT的专家即可设置运动计划查询,从结果中提取信息以及直接与各种软件组件接口。我们通过几个示例用例证明了它的功效。
translated by 谷歌翻译
我们认为,利用公共,跨平台,语言 - 不可止结的包管理器和jupyter紧密地耦合广泛使用的机器人操作系统,这是有益的,这是一种提供科学计算的基于网络的互动计算环境。我们为公务员提供新的ROS套餐,可以轻松地安装ROS沿着数据科学和机器学习套件。多个ROS版本(目前ROS1 Melodic和Neatic以及ROS2 Foxy和Galactic)可以同时在一台机器上运行,具有适用于Linux,Windows和OSX的预编译二进制文件,以及ARM架构(例如Raspberry PI和新的苹果硅)。要处理ROS生态系统的大尺寸,我们通过重写C ++的关键零件来显着提高公共求解器和构建系统的速度。我们进一步为ROS提供了一系列jupyterlab扩展,包括用于实时绘图,调试和机器人控制的插件,以及与ZETHU的紧密集成,RVIZ如可视化工具。罗布斯特克在一起结合了最好的数据科学和机器人世界,帮助研究人员和开发人员为学术和工业项目建立定制解决方案。
translated by 谷歌翻译
工业机器人的机器人编程方法是耗时的,并且通常需要运营商在机器人和编程中具有知识。为了降低与重新编程相关的成本,最近已经提出了使用增强现实的各种接口,为用户提供更直观的手段,可以实时控制机器人并在不必编码的情况下编程它们。但是,大多数解决方案都要求操作员接近真正的机器人的工作空间,这意味着由于安全危险而从生产线上移除它或关闭整个生产线。我们提出了一种新颖的增强现实界面,提供了用户能够建模工作空间的虚拟表示,该工作空间可以被保存和重复使用,以便编程新任务或调整旧任务,而无需与真正的机器人共同定位。与以前的接口类似,操作员随后可以通过操纵虚拟机器人来实时地控制机器人任务或控制机器人。我们评估所提出的界面与用户学习的直观和可用性,其中18名参与者为拆卸任务编写了一个机器人操纵器。
translated by 谷歌翻译
本文介绍了Apamant,这是一组软件模块,可为现有的机器人计划和控制软件框架提供掌握计划功能。我们提出的工作允许用户调整操作任务,以在不同的情况下使用最小的用户输入,从而减少操作员的认知负载。开发的工具包括(1)基于插件的组件,使得易于扩展默认功能并使用第三方Grasp库,(2)以对象为中心的方式来定义任务约束,(3)用户友好的RVIZ接口使用GRASP计划者实用程序,以及(4)使用感知数据来编程任务的交互式工具。我们在各种机器人模拟上测试了框架。
translated by 谷歌翻译
我们介绍了栖息地2.0(H2.0),这是一个模拟平台,用于培训交互式3D环境和复杂物理的场景中的虚拟机器人。我们为体现的AI堆栈 - 数据,仿真和基准任务做出了全面的贡献。具体来说,我们提出:(i)复制:一个由艺术家的,带注释的,可重新配置的3D公寓(匹配真实空间)与铰接对象(例如可以打开/关闭的橱柜和抽屉); (ii)H2.0:一个高性能物理学的3D模拟器,其速度超过8-GPU节点上的每秒25,000个模拟步骤(实时850x实时),代表先前工作的100倍加速;和(iii)家庭助理基准(HAB):一套辅助机器人(整理房屋,准备杂货,设置餐桌)的一套常见任务,以测试一系列移动操作功能。这些大规模的工程贡献使我们能够系统地比较长期结构化任务中的大规模加固学习(RL)和经典的感官平面操作(SPA)管道,并重点是对新对象,容器和布局的概括。 。我们发现(1)与层次结构相比,(1)平面RL政策在HAB上挣扎; (2)具有独立技能的层次结构遭受“交接问题”的困扰,(3)水疗管道比RL政策更脆。
translated by 谷歌翻译
通过智能连接设备,技术正在逐步重塑国内环境,提高家庭安全和整体环境质量。然而,人口转移和流行病最近展示导致他们房屋中的老年人隔离,产生了可靠的辅助人物的需求。机器人助理是国内福利创新的新前沿。老年人监测只是一个可能的服务应用之一,智能机器人平台可以处理集体福祉。在本文中,我们展示了一个新的辅助机器人,我们通过模块化的基于层的架构开发,使灵活的机械设计与最先进的人工智能进行了灵活的人工智能,以便感知和声音控制。关于以前的机器人助手的作品,我们提出了一个设置有四个麦粉轮的全向平台,这使得自主导航与杂乱环境中的有效障碍物避免。此外,我们设计可控定位装置,以扩展传感器的视觉范围,并改善对用户界面的访问以进行远程呈现和连接。轻量级深度学习解决方案,用于视觉感知,人员姿势分类和声乐命令完全运行机器人的嵌入式硬件,避免了云服务私有数据收集产生的隐私问题。
translated by 谷歌翻译
尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
3D视觉输入的对象操纵对构建可宽大的感知和政策模型构成了许多挑战。然而,现有基准中的3D资产主要缺乏与拓扑和几何中的现实世界内复杂的3D形状的多样性。在这里,我们提出了Sapien操纵技能基准(Manishill)以在全物理模拟器中的各种物体上基准操纵技巧。 Manishill中的3D资产包括大型课堂内拓扑和几何变化。仔细选择任务以涵盖不同类型的操纵挑战。 3D Vision的最新进展也使我们认为我们应该定制基准,以便挑战旨在邀请研究3D深入学习的研究人员。为此,我们模拟了一个移动的全景摄像头,返回以自我为中心的点云或RGB-D图像。此外,我们希望Manishill是为一个对操纵研究感兴趣的广泛研究人员提供服务。除了支持从互动的政策学习,我们还支持学习 - 从演示(LFD)方法,通过提供大量的高质量演示(〜36,000个成功的轨迹,总共〜1.5米点云/ RGB-D帧)。我们提供使用3D深度学习和LFD算法的基线。我们的基准(模拟器,环境,SDK和基线)的所有代码都是开放的,并且将基于基准举办跨学科研究人员面临的挑战。
translated by 谷歌翻译
最近,有丰富的运动规划,用于机器人操纵新的运动规划人员不断提出,每个运动规划人员都具有自己独特的优势和劣势。然而,评估新规划者是挑战性的,研究人员往往为基准创造自己的临时问题,这是耗时的,容易偏见,并且不会直接比较其他最先进的规划者。我们呈现MotionBenchmaker,一个开源工具来生成基准测试数据集以实现现实的机器人操纵问题。 MotionBenchmaker旨在成为可扩展,易于使用的工具,允许用户通过比较运动计划算法来获得数据集并通过基准测试。凭经验,我们展示了使用MotionBenchmaker作为程序生成数据集的工具的好处,这些工具有助于对规划者的公平评估有所帮助。我们还提供了一套40个预制数据集,8个环境中有5种不同的常用机器人,作为加速运动计划研究的共同点。
translated by 谷歌翻译
We present a generalised architecture for reactive mobile manipulation while a robot's base is in motion toward the next objective in a high-level task. By performing tasks on-the-move, overall cycle time is reduced compared to methods where the base pauses during manipulation. Reactive control of the manipulator enables grasping objects with unpredictable motion while improving robustness against perception errors, environmental disturbances, and inaccurate robot control compared to open-loop, trajectory-based planning approaches. We present an example implementation of the architecture and investigate the performance on a series of pick and place tasks with both static and dynamic objects and compare the performance to baseline methods. Our method demonstrated a real-world success rate of over 99%, failing in only a single trial from 120 attempts with a physical robot system. The architecture is further demonstrated on other mobile manipulator platforms in simulation. Our approach reduces task time by up to 48%, while also improving reliability, gracefulness, and predictability compared to existing architectures for mobile manipulation. See https://benburgesslimerick.github.io/ManipulationOnTheMove for supplementary materials.
translated by 谷歌翻译
众所周知,很难拥有一个可靠且强大的框架来将多代理深入强化学习算法与实用的多机器人应用联系起来。为了填补这一空白,我们为称为MultiroBolearn1的多机器人系统提出并构建了一个开源框架。该框架构建了统一的模拟和现实应用程序设置。它旨在提供标准的,易于使用的模拟方案,也可以轻松地将其部署到现实世界中的多机器人环境中。此外,该框架为研究人员提供了一个基准系统,以比较不同的强化学习算法的性能。我们使用不同类型的多代理深钢筋学习算法在离散和连续的动作空间中使用不同类型的多代理深钢筋学习算法来证明框架的通用性,可扩展性和能力。
translated by 谷歌翻译