采用车辆到车辆通信以提高自动驾驶技术中的感知性能,最近引起了相当大的关注;然而,对于基准测试算法的合适开放数据集已经难以开发和评估合作感知技术。为此,我们介绍了用于车辆到车辆的第一个大型开放模拟数据集。它包含超过70个有趣的场景,11,464帧和232,913帧的注释3D车辆边界盒,从卡拉的8个城镇和洛杉矶的数码镇。然后,我们构建了一个全面的基准,共有16种实施模型来评估若干信息融合策略〜(即早期,晚期和中间融合),最先进的激光雷达检测算法。此外,我们提出了一种新的细心中间融合管线,以从多个连接的车辆汇总信息。我们的实验表明,拟议的管道可以很容易地与现有的3D LIDAR探测器集成,即使具有大的压缩速率也可以实现出色的性能。为了鼓励更多的研究人员来调查车辆到车辆的感知,我们将释放数据集,基准方法以及HTTPS://mobility-lab.seas.ucla.edu/opv2v2v/中的所有相关代码。
translated by 谷歌翻译