我们提供了机器人智能系统和控制(RISC)LAB MULTIAGEGGENT测试,用于在室外环境中的可靠搜索和救援和空中运输。该系统包括三个多陆无人机(无人机)的团队,能够在室外场中自主搜索,拾取和运输随机分布的物体。该方法涉及基于视觉的物体检测和定位,具有我们的新颖设计,基于GPS的UAV导航和下降区的物体的安全释放。我们的合作策略可确保无人机之间安全的空间分离,我们可以使用已启用的通信共识,防止下落区域的冲突。所有计算都在每个UAV上执行。我们描述了系统的完整软件和硬件架构,并使用全面的户外实验展示其可靠的性能,并通过将我们的结果与最近的一些类似的作品进行比较。
translated by 谷歌翻译
本文介绍了设计,开发,并通过IISC-TCS团队为穆罕默德·本·扎耶德国际机器人挑战赛2020年挑战1的目标的挑战1硬件 - 软件系统的测试是抓住从移动和机动悬挂球UAV和POP气球锚定到地面,使用合适的操纵器。解决这一挑战的重要任务包括具有高效抓取和突破机制的硬件系统的设计和开发,考虑到体积和有效载荷的限制,使用适用于室外环境的可视信息的准确目标拦截算法和开发动态多功能机空中系统的软件架构,执行复杂的动态任务。在本文中,设计了具有末端执行器的单个自由度机械手设计用于抓取和突发,并且开发了鲁棒算法以拦截在不确定的环境中的目标。基于追求参与和人工潜在功能的概念提出了基于视觉的指导和跟踪法。本工作中提供的软件架构提出了一种操作管理系统(OMS)架构,其在多个无人机之间协同分配静态和动态任务,以执行任何给定的任务。这项工作的一个重要方面是所有开发的系统都设计用于完全自主模式。在这项工作中还包括对凉亭环境和现场实验结果中完全挑战的模拟的详细描述。所提出的硬件软件系统对反UAV系统特别有用,也可以修改以满足其他几种应用。
translated by 谷歌翻译
近年来,空中机器人背景下的高速导航和环境互动已成为几个学术和工业研究研究的兴趣领域。特别是,由于其若干环境中的潜在可用性,因此搜索和拦截(SAI)应用程序造成引人注目的研究区域。尽管如此,SAI任务涉及有关感官权重,板载计算资源,致动设计和感知和控制算法的具有挑战性的发展。在这项工作中,已经提出了一种用于高速对象抓握的全自动空中机器人。作为一个额外的子任务,我们的系统能够自主地刺穿位于靠近表面的杆中的气球。我们的第一款贡献是在致动和感觉水平的致动和感觉水平的空中机器人的设计,包括具有额外传感器的新型夹具设计,使机器人能够高速抓住物体。第二种贡献是一种完整的软件框架,包括感知,状态估计,运动计划,运动控制和任务控制,以便快速且强大地执行自主掌握任务。我们的方法已在一个具有挑战性的国际竞争中验证,并显示出突出的结果,能够在室外环境中以6米/分来自动搜索,遵循和掌握移动物体
translated by 谷歌翻译
Mohamed Bin Zayed国际机器人挑战(MBZIRC)2020为无人机(无人机)构成了不同的挑战。我们提供了四个量身定制的无人机,专门为MBZIRC的单独空中机器人任务开发,包括自定义硬件和软件组件。在挑战1中,使用高效率,车载对象检测管道进行目标UAV,以捕获来自目标UAV的球。第二个UAV使用类似的检测方法来查找和流行散落在整个竞技场的气球。对于挑战2,我们展示了一种能够自主空中操作的更大的无人机:从相机图像找到并跟踪砖。随后,将它们接近,挑选,运输并放在墙上。最后,在挑战3中,我们的UAV自动发现使用LIDAR和热敏摄像机的火灾。它用船上灭火器熄灭火灾。虽然每个机器人都具有任务特定的子系统,但所有无人机都依赖于为该特定和未来竞争开发的标准软件堆栈。我们介绍了我们最开源的软件解决方案,包括系统配置,监控,强大无线通信,高级控制和敏捷轨迹生成的工具。为了解决MBZirc 2020任务,我们在多个研究领域提出了机器视觉和轨迹生成的多个研究领域。我们介绍了我们的科学贡献,这些贡献构成了我们的算法和系统的基础,并分析了在阿布扎比的MBZIRC竞赛2020年的结果,我们的系统在大挑战中达到了第二名。此外,我们讨论了我们参与这种复杂的机器人挑战的经验教训。
translated by 谷歌翻译
在过去的十年中,自动驾驶航空运输车辆引起了重大兴趣。这是通过空中操纵器和新颖的握手的技术进步来实现这一目标的。此外,改进的控制方案和车辆动力学能够更好地对有效载荷进行建模和改进的感知算法,以检测无人机(UAV)环境中的关键特征。在这项调查中,对自动空中递送车辆的技术进步和开放研究问题进行了系统的审查。首先,详细讨论了各种类型的操纵器和握手,以及动态建模和控制方法。然后,讨论了降落在静态和动态平台上的。随后,诸如天气状况,州估计和避免碰撞之类的风险以确保安全过境。最后,调查了交付的UAV路由,该路由将主题分为两个领域:无人机操作和无人机合作操作。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
Many aerial robotic applications require the ability to land on moving platforms, such as delivery trucks and marine research boats. We present a method to autonomously land an Unmanned Aerial Vehicle on a moving vehicle. A visual servoing controller approaches the ground vehicle using velocity commands calculated directly in image space. The control laws generate velocity commands in all three dimensions, eliminating the need for a separate height controller. The method has shown the ability to approach and land on the moving deck in simulation, indoor and outdoor environments, and compared to the other available methods, it has provided the fastest landing approach. Unlike many existing methods for landing on fast-moving platforms, this method does not rely on additional external setups, such as RTK, motion capture system, ground station, offboard processing, or communication with the vehicle, and it requires only the minimal set of hardware and localization sensors. The videos and source codes are also provided.
translated by 谷歌翻译
我们提出了一个新型混合动力系统(硬件和软件),该系统载有微型无人接地车辆(MiniUGV),以执行复杂的搜索和操纵任务。该系统利用异质机器人来完成使用单个机器人系统无法完成的任务。它使无人机能够探索一个隐藏的空间,并具有狭窄的开口,Miniugv可以轻松进入并逃脱。假定隐藏的空间可用于MiniUGV。 MiniUGV使用红外(IR)传感器和单眼相机在隐藏空间中搜索对象。所提出的系统利用摄像机的更广阔的视野(FOV)以及对象检测算法的随机性引导隐藏空间中的MiniUGV以找到对象。找到对象后,MiniUGV使用视觉伺服抓住它,然后返回其起点,从无人机将其缩回并将物体运送到安全的地方。如果在隐藏空间中没有发现对象,则无人机继续进行空中搜索。束缚的MiniUGV使无人机具有超出其影响力并执行搜索和操纵任务的能力,而该任务对于任何机器人都无法单独进行。该系统具有广泛的应用,我们通过重复实验证明了其可行性。
translated by 谷歌翻译
本文介绍了Cerberus机器人系统系统,该系统赢得了DARPA Subterranean挑战最终活动。出席机器人自主权。由于其几何复杂性,降解的感知条件以及缺乏GPS支持,严峻的导航条件和拒绝通信,地下设置使自动操作变得特别要求。为了应对这一挑战,我们开发了Cerberus系统,该系统利用了腿部和飞行机器人的协同作用,再加上可靠的控制,尤其是为了克服危险的地形,多模式和多机器人感知,以在传感器退化,以及在传感器退化的条件下进行映射以及映射通过统一的探索路径计划和本地运动计划,反映机器人特定限制的弹性自主权。 Cerberus基于其探索各种地下环境及其高级指挥和控制的能力,表现出有效的探索,对感兴趣的对象的可靠检测以及准确的映射。在本文中,我们报告了DARPA地下挑战赛的初步奔跑和最终奖项的结果,并讨论了为社区带来利益的教训所面临的亮点和挑战。
translated by 谷歌翻译
为了使机器人系统在高风险,现实世界中取得成功,必须快速部署和强大的环境变化,表现不佳的硬件以及任务子任务失败。这些机器人通常被设计为考虑一系列任务事件,复杂的算法在某些关键的约束下降低了单个子任务失败率。我们的方法在视觉和控制中利用了共同的技术,并通过结果监测和恢复策略将鲁棒性编码为任务结构。此外,我们的系统基础架构可以快速部署,并且不需要中央通信。该报告还包括快速现场机器人开发和测试的课程。我们通过现实机器人实验在美国宾夕法尼亚州匹兹堡的户外测试地点以及2020年的穆罕默德·本·扎耶德国际机器人挑战赛开发和评估了我们的系统。所有竞争试验均在没有RTK-GP的情况下以完全自主模式完成。我们的系统在挑战2中排名第四,在大挑战赛中排名第七,诸如弹出五个气球(挑战1)之类的显着成就,成功地挑选和放置了一个障碍(挑战2),并将最多的水分配到户外,带有真正的户外火,并与自治无人机(挑战3)。
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
我们提出了通过现实的模拟和现实世界实验来支持可复制研究的多运动无人机控制(UAV)和估计系统。我们提出了一个独特的多帧本地化范式,用于同时使用多个传感器同时估算各种参考框架中的无人机状态。该系统可以在GNSS和GNSS贬低的环境中进行复杂的任务,包括室外室内过渡和执行冗余估计器,以备份不可靠的本地化源。提出了两种反馈控制设计:一个用于精确和激进的操作,另一个用于稳定和平稳的飞行,并进行嘈杂的状态估计。拟议的控制和估计管道是在3D中使用Euler/Tait-Bryan角度表示的,而无需使用Euler/Tait-Bryan角度表示。取而代之的是,我们依靠旋转矩阵和一个新颖的基于标题的惯例来代表标准多电流直升机3D中的一个自由旋转自由度。我们提供了积极维护且有据可查的开源实现,包括对无人机,传感器和本地化系统的现实模拟。拟议的系统是多年应用系统,空中群,空中操纵,运动计划和遥感的多年研究产物。我们所有的结果都得到了现实世界中的部署的支持,该系统部署将系统塑造成此处介绍的表单。此外,该系统是在我们团队从布拉格的CTU参与期间使用的,该系统在享有声望的MBZIRC 2017和2020 Robotics竞赛中,还参加了DARPA SubT挑战赛。每次,我们的团队都能在世界各地最好的竞争对手中获得最高位置。在每种情况下,挑战都促使团队改善系统,并在紧迫的期限内获得大量高质量的体验。
translated by 谷歌翻译
纳米大小的无人机具有探索未知和复杂环境的巨大潜力。它们的尺寸很小,使它们敏捷且安全地靠近人类,并使他们能够穿过狭窄的空间。但是,它们的尺寸很小和有效载荷限制了板载计算和传感的可能性,从而使完全自主的飞行极具挑战性。迈向完全自主权的第一步是可靠的避免障碍,这在通用的室内环境中被证明在技术上具有挑战性。当前的方法利用基于视觉或一维传感器来支持纳米无人机感知算法。这项工作为基于新颖的毫米尺寸64像素多区域飞行时间(TOF)传感器和通用的无模型控制策略提供了轻巧的避免障碍系统。报告的现场测试基于Crazyflie 2.1,该测试由定制的多区TOF甲板扩展,总质量为35克。该算法仅使用0.3%的车载处理能力(210US执行时间),帧速率为15fps,为许多未来应用提供了绝佳的基础。运行提出的感知系统(包括抬起和操作传感器)所需的总无人机功率不到10%。在通用且以前未开发的室内环境中,提出的自动纳米大小无人机以0.5m/s的速度达到100%可靠性。所提出的系统释放出具有广泛数据集的开源,包括TOF和灰度摄像头数据,并与运动捕获中的无人机位置地面真相结合在一起。
translated by 谷歌翻译
Filming sport videos from an aerial view has always been a hard and an expensive task to achieve, especially in sports that require a wide open area for its normal development or the ones that put in danger human safety. Recently, a new solution arose for aerial filming based on the use of Unmanned Aerial Vehicles (UAVs), which is substantially cheaper than traditional aerial filming solutions that require conventional aircrafts like helicopters or complex structures for wide mobility. In this paper, we describe the design process followed for building a customized UAV suitable for sports aerial filming. The process includes the requirements definition, technical sizing and selection of mechanical, hardware and software technologies, as well as the whole integration and operation settings. One of the goals is to develop technologies allowing to build low cost UAVs and to manage them for a wide range of usage scenarios while achieving high levels of flexibility and automation. This work also shows some technical issues found during the development of the UAV as well as the solutions implemented.
translated by 谷歌翻译
安装在微空中车辆(MAV)上的地面穿透雷达是有助于协助人道主义陆地间隙的工具。然而,合成孔径雷达图像的质量取决于雷达天线的准确和精确运动估计以及与MAV产生信息性的观点。本文介绍了一个完整的自动空气缩进的合成孔径雷达(GPSAR)系统。该系统由空间校准和时间上同步的工业级传感器套件组成,使得在地面上方,雷达成像和光学成像。自定义任务规划框架允许在地上控制地上的Stripmap和圆形(GPSAR)轨迹的生成和自动执行,以及空中成像调查飞行。基于因子图基于Dual接收机实时运动(RTK)全局导航卫星系统(GNSS)和惯性测量单元(IMU)的测量值,以获得精确,高速平台位置和方向。地面真理实验表明,传感器时机为0.8美元,正如0.1美元的那样,定位率为1 kHz。与具有不确定标题初始化的单个位置因子相比,双位置因子配方可提高高达40%,批量定位精度高达59%。我们的现场试验验证了本地化准确性和精度,使得能够相干雷达测量和检测在沙子中埋入的雷达目标。这验证了作为鸟瞰着地图检测系统的潜力。
translated by 谷歌翻译
本文通过讨论参加了为期三年的SubT竞赛的六支球队的不同大满贯策略和成果,报道了地下大满贯的现状。特别是,本文有四个主要目标。首先,我们审查团队采用的算法,架构和系统;特别重点是以激光雷达以激光雷达为中心的SLAM解决方案(几乎所有竞争中所有团队的首选方法),异质的多机器人操作(包括空中机器人和地面机器人)和现实世界的地下操作(从存在需要处理严格的计算约束的晦涩之处)。我们不会回避讨论不同SubT SLAM系统背后的肮脏细节,这些系统通常会从技术论文中省略。其次,我们通过强调当前的SLAM系统的可能性以及我们认为与一些良好的系统工程有关的范围来讨论该领域的成熟度。第三,我们概述了我们认为是基本的开放问题,这些问题可能需要进一步的研究才能突破。最后,我们提供了在SubT挑战和相关工作期间生产的开源SLAM实现和数据集的列表,并构成了研究人员和从业人员的有用资源。
translated by 谷歌翻译
软机器人抓手具有许多优势,可以解决动态空中抓握方面的挑战。最近展示的用于空中抓握的典型多指的软握把高度依赖于成功抓握的目标对象的方向。这项研究通过开发一种用于自主空气操纵的全向系统来推动动态空中抓地力的边界。特别是,该论文研究了一种新型,高度集成,模块化,传感器富含通用的握把的设计,制造和实验验证,专为空中应用而设计。提出的抓手利用粒子堵塞和软颗粒材料的最新发展产生了强大的握持力,同时非常轻巧,节能,并且只需要低激活力。我们表明,通过在膜的硅硅混合物中添加添加剂,可以将持有力提高多达50%。实验表明,即使没有几何互锁,我们的轻质抓地力也可以以低至2.5n的激活力发育高达15n的持有力。最后,通过将抓地力安装到多旋风的情况下,在实际条件下执行了一个选择和释放任务。开发的空中抓握系统具有许多有用的属性,例如对碰撞的弹性和鲁棒性以及将无人机与环境脱离的固有的被动合规性。
translated by 谷歌翻译
快速的空中抓握机器人可以导致许多应用程序,这些应用程序利用了快速,动态的拾取和放置对象。传统上用于空中操纵器中的刚性握手需要高精度和特定的物体几何形状才能成功抓握。我们提出了猛禽(Raptor),这是一个四轮摩托车平台,结合了自定义的鳍射线抓地力,以实现具有不同几何形状的物体的更灵活的抓握,利用软材料的特性来增加抓地力和物体之间的接触表面。为了减少通信延迟,我们提出了一种基于快速DDS(数据分配服务)的新的轻型中间件解决方案,作为ROS(机器人操作系统)的替代方案。我们表明,猛禽在现实环境中平均达到了83%的抓地力,用于四种不同的物体几何形状,同时在握把期间以1 m/s的平均速度移动。在高速设置中,与以前的作品相比,Raptor最多支持有效载荷的四倍。我们的结果突出了自动仓库中航空无人机的潜力以及其他在难以到达的地方运行时速度,迅速和鲁棒性至关重要的操作应用。
translated by 谷歌翻译
在本报告中,我们提出了在哥斯达黎加太平洋架子和圣托里尼 - Kolumbo Caldera Complex中,在寻找寿命中的寻找寿命任务中的自主海洋机器人技术协调,操作策略和结果。它作为可能存在于海洋超越地球的环境中的类似物。本报告侧重于ROV操纵器操作的自动化,用于从海底获取有针对性的生物样品收集和返回的。在未来的外星勘查任务到海洋世界的背景下,ROV是一个模拟的行星着陆器,必须能够有能力的高水平自主权。我们的田间试验涉及两个水下车辆,冰(Nui)杂交ROV的两个水下车辆(即,龙眼或自主)任务,都配备了7-DOF液压机械手。我们描述了一种适应性,硬件无关的计算机视觉架构,可实现高级自动化操作。 Vision系统提供了对工作空间的3D理解,以便在复杂的非结构化环境中通知操纵器运动计划。我们展示了视觉系统和控制框架通过越来越具有挑战性的环境中的现场试验的有效性,包括来自活性Undersea火山,Kolumbo内的自动收集和生物样品的回报。根据我们在该领域的经验,我们讨论了我们的系统的表现,并确定了未来研究的有希望的指示。
translated by 谷歌翻译
本文介绍了使用腿收割机进行精密收集任务的集成系统。我们的收割机在狭窄的GPS拒绝了森林环境中的自主导航和树抓取了一项挑战性的任务。提出了映射,本地化,规划和控制的策略,并集成到完全自主系统中。任务从使用定制的传感器模块开始使用人员映射感兴趣区域。随后,人类专家选择树木进行收获。然后将传感器模块安装在机器上并用于给定地图内的本地化。规划算法在单路径规划问题中搜索一个方法姿势和路径。我们设计了一个路径,后面的控制器利用腿的收割机的谈判粗糙地形的能力。在达接近姿势时,机器用通用夹具抓住一棵树。此过程重复操作员选择的所有树。我们的系统已经在与树干和自然森林中的测试领域进行了测试。据我们所知,这是第一次在现实环境中运行的全尺寸液压机上显示了这一自主权。
translated by 谷歌翻译