神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
我们为特殊神经网络架构,称为运营商复发性神经网络的理论分析,用于近似非线性函数,其输入是线性运算符。这些功能通常在解决方案算法中出现用于逆边值问题的问题。传统的神经网络将输入数据视为向量,因此它们没有有效地捕获与对应于这种逆问题中的数据的线性运算符相关联的乘法结构。因此,我们介绍一个类似标准的神经网络架构的新系列,但是输入数据在向量上乘法作用。由较小的算子出现在边界控制中的紧凑型操作员和波动方程的反边值问题分析,我们在网络中的选择权重矩阵中促进结构和稀疏性。在描述此架构后,我们研究其表示属性以及其近似属性。我们还表明,可以引入明确的正则化,其可以从所述逆问题的数学分析导出,并导致概括属性上的某些保证。我们观察到重量矩阵的稀疏性改善了概括估计。最后,我们讨论如何将运营商复发网络视为深度学习模拟,以确定诸如用于从边界测量的声波方程中重建所未知的WAVESTED的边界控制的算法算法。
translated by 谷歌翻译
非线性自适应控制理论中的一个关键假设是系统的不确定性可以在一组已知基本函数的线性跨度中表示。虽然该假设导致有效的算法,但它将应用限制为非常特定的系统类别。我们介绍一种新的非参数自适应算法,其在参数上学习无限尺寸密度,以取消再现内核希尔伯特空间中的未知干扰。令人惊讶的是,所产生的控制输入承认,尽管其底层无限尺寸结构,但是尽管它的潜在无限尺寸结构实现了其实施的分析表达。虽然这种自适应输入具有丰富和富有敏感性的 - 例如,传统的线性参数化 - 其计算复杂性随时间线性增长,使其比其参数对应力相对较高。利用随机傅里叶特征的理论,我们提供了一种有效的随机实现,该实现恢复了经典参数方法的复杂性,同时可透明地保留非参数输入的表征性。特别地,我们的显式范围仅取决于系统的基础参数,允许我们所提出的算法有效地缩放到高维系统。作为该方法的说明,我们展示了随机近似算法学习由牛顿重力交互的十点批量组成的60维系统的预测模型的能力。
translated by 谷歌翻译
我们开发一种方法来构造来自表示基本上非线性(或不可连锁的)动态系统的数据集构成低维预测模型,其中具有由有限许多频率的外部强制进行外部矫正的双曲线线性部分。我们的数据驱动,稀疏,非线性模型获得为低维,吸引动力系统的光谱子纤维(SSM)的降低的动态的延长正常形式。我们说明了数据驱动的SSM降低了高维数值数据集的功率和涉及梁振荡,涡旋脱落和水箱中的晃动的实验测量。我们发现,在未加工的数据上培训的SSM减少也在额外的外部强制下准确预测非线性响应。
translated by 谷歌翻译
本文评价用机器学习问题的数值优化方法。由于机器学习模型是高度参数化的,我们专注于适合高维优化的方法。我们在二次模型上构建直觉,以确定哪种方法适用于非凸优化,并在凸函数上开发用于这种方法的凸起函数。随着随机梯度下降和动量方法的这种理论基础,我们试图解释为什么机器学习领域通常使用的方法非常成功。除了解释成功的启发式之外,最后一章还提供了对更多理论方法的广泛审查,这在实践中并不像惯例。所以在某些情况下,这项工作试图回答这个问题:为什么默认值中包含的默认TensorFlow优化器?
translated by 谷歌翻译
本论文主要涉及解决深层(时间)高斯过程(DGP)回归问题的状态空间方法。更具体地,我们代表DGP作为分层组合的随机微分方程(SDES),并且我们通过使用状态空间过滤和平滑方法来解决DGP回归问题。由此产生的状态空间DGP(SS-DGP)模型生成丰富的电视等级,与建模许多不规则信号/功能兼容。此外,由于他们的马尔可道结构,通过使用贝叶斯滤波和平滑方法可以有效地解决SS-DGPS回归问题。本论文的第二次贡献是我们通过使用泰勒力矩膨胀(TME)方法来解决连续离散高斯滤波和平滑问题。这诱导了一类滤波器和SmooThers,其可以渐近地精确地预测随机微分方程(SDES)解决方案的平均值和协方差。此外,TME方法和TME过滤器和SmoOthers兼容模拟SS-DGP并解决其回归问题。最后,本文具有多种状态 - 空间(深)GPS的应用。这些应用主要包括(i)来自部分观察到的轨迹的SDES的未知漂移功能和信号的光谱 - 时间特征估计。
translated by 谷歌翻译
我们研究了趋势过滤的多元版本,称为Kronecker趋势过滤或KTF,因为设计点以$ D $维度形成格子。 KTF是单变量趋势过滤的自然延伸(Steidl等,2006; Kim等人,2009; Tibshirani,2014),并通过最大限度地减少惩罚最小二乘问题,其罚款术语总和绝对(高阶)沿每个坐标方向估计参数的差异。相应的惩罚运算符可以编写单次趋势过滤惩罚运营商的Kronecker产品,因此名称Kronecker趋势过滤。等效,可以在$ \ ell_1 $ -penalized基础回归问题上查看KTF,其中基本功能是下降阶段函数的张量产品,是一个分段多项式(离散样条)基础,基于单变量趋势过滤。本文是Sadhanala等人的统一和延伸结果。 (2016,2017)。我们开发了一套完整的理论结果,描述了$ k \ grone 0 $和$ d \ geq 1 $的$ k ^ {\ mathrm {th}} $ over kronecker趋势过滤的行为。这揭示了许多有趣的现象,包括KTF在估计异构平滑的功能时KTF的优势,并且在$ d = 2(k + 1)$的相位过渡,一个边界过去(在高维对 - 光滑侧)线性泡沫不能完全保持一致。我们还利用Tibshirani(2020)的离散花键来利用最近的结果,特别是离散的花键插值结果,使我们能够将KTF估计扩展到恒定时间内的任何偏离晶格位置(与晶格数量的大小无关)。
translated by 谷歌翻译
我们提出了一种从数据模拟动态系统的数值方法。我们使用最近引入的方法可扩展的概率近似(SPA)从欧几里德空间到凸多台的项目点,并表示在新的低维坐标中的系统的预计状态,表示其在多晶硅中的位置。然后,我们介绍特定的非线性变换,以构建多特渗透中动力学的模型,并转换回原始状态空间。为了克服投影到低维层的潜在信息损失,我们在局部延迟嵌入定理的意义上使用记忆。通过施工,我们的方法产生稳定的模型。我们说明了在各种示例上具有多个连接组件的甚至复制混沌动力学和吸引子的方法的能力。
translated by 谷歌翻译
本文研究了基于Laplacian Eigenmaps(Le)的基于Laplacian EIGENMAPS(PCR-LE)的主要成分回归的统计性质,这是基于Laplacian Eigenmaps(Le)的非参数回归的方法。 PCR-LE通过投影观察到的响应的向量$ {\ bf y} =(y_1,\ ldots,y_n)$ to to changbood图表拉普拉斯的某些特征向量跨越的子空间。我们表明PCR-Le通过SoboLev空格实现了随机设计回归的最小收敛速率。在设计密度$ P $的足够平滑条件下,PCR-le达到估计的最佳速率(其中已知平方$ l ^ 2 $ norm的最佳速率为$ n ^ { - 2s /(2s + d) )} $)和健美的测试($ n ^ { - 4s /(4s + d)$)。我们还表明PCR-LE是\ EMPH {歧管Adaptive}:即,我们考虑在小型内在维度$ M $的歧管上支持设计的情况,并为PCR-LE提供更快的界限Minimax估计($ n ^ { - 2s /(2s + m)$)和测试($ n ^ { - 4s /(4s + m)$)收敛率。有趣的是,这些利率几乎总是比图形拉普拉斯特征向量的已知收敛率更快;换句话说,对于这个问题的回归估计的特征似乎更容易,统计上讲,而不是估计特征本身。我们通过经验证据支持这些理论结果。
translated by 谷歌翻译
内核方法是机器学习中最流行的技术之一,使用再现内核希尔伯特空间(RKHS)的属性来解决学习任务。在本文中,我们提出了一种新的数据分析框架,与再现内核Hilbert $ C ^ * $ - 模块(rkhm)和rkhm中的内核嵌入(kme)。由于RKHM包含比RKHS或VVRKHS)的更丰富的信息,因此使用RKHM的分析使我们能够捕获和提取诸如功能数据的结构属性。我们向RKHM展示了rkhm理论的分支,以适用于数据分析,包括代表性定理,以及所提出的KME的注射性和普遍性。我们还显示RKHM概括RKHS和VVRKHS。然后,我们提供采用RKHM和提议的KME对数据分析的具体程序。
translated by 谷歌翻译
协方差估计在功能数据分析中普遍存在。然而,对多维域的功能观测的情况引入了计算和统计挑战,使标准方法有效地不适用。为了解决这个问题,我们将“协方差网络”(CoVNet)介绍为建模和估算工具。 Covnet模型是“Universal” - 它可用于近似于达到所需精度的任何协方差。此外,该模型可以有效地拟合到数据,其神经网络架构允许我们在实现中采用现代计算工具。 Covnet模型还承认了一个封闭形式的实体分解,可以有效地计算,而不构建协方差本身。这有助于在CoVnet的背景下轻松存储和随后操纵协方差。我们建立了拟议估计者的一致性,得出了汇合速度。通过广泛的仿真研究和休息状态FMRI数据的应用,证明了所提出的方法的有用性。
translated by 谷歌翻译
许多现代数据集,从神经影像和地统计数据等领域都以张量数据的随机样本的形式来说,这可以被理解为对光滑的多维随机功能的嘈杂观察。来自功能数据分析的大多数传统技术被维度的诅咒困扰,并且随着域的尺寸增加而迅速变得棘手。在本文中,我们提出了一种学习从多维功能数据样本的持续陈述的框架,这些功能是免受诅咒的几种表现形式的。这些表示由一组可分离的基函数构造,该函数被定义为最佳地适应数据。我们表明,通过仔细定义的数据的仔细定义的减少转换的张测仪分解可以有效地解决所得到的估计问题。使用基于差分运算符的惩罚,并入粗糙的正则化。也建立了相关的理论性质。在模拟研究中证明了我们对竞争方法的方法的优点。我们在神经影像动物中得出真正的数据应用。
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
最近有兴趣的兴趣在教师学生环境中的各种普遍性线性估计问题中的渐近重建性能研究,特别是对于I.I.D标准正常矩阵的案例。在这里,我们超越这些矩阵,并证明了具有具有任意界限频谱的旋转不变数据矩阵的凸遍的线性模型的重建性能的分析公式,严格地确认使用来自统计物理的副本衍生的猜想。该公式包括许多问题,例如压缩感测或稀疏物流分类。通过利用消息通过算法和迭代的统计特性来实现证明,允许表征估计器的渐近实证分布。我们的证据是基于构建Oracle多层向量近似消息传递算法的会聚序列的构建,其中通过检查等效动态系统的稳定性来完成收敛分析。我们说明了我们对主流学习方法的数值示例的要求,例如稀疏的逻辑回归和线性支持矢量分类器,显示中等大小模拟和渐近预测之间的良好一致性。
translated by 谷歌翻译
贝叶斯推理允许在贝叶斯神经网络的上下文中获取有关模型参数的有用信息,或者在贝叶斯神经网络的背景下。通常的Monte Carlo方法的计算成本,用于在贝叶斯推理中对贝叶斯推理的后验法律进行线性点的数量与数据点的数量进行线性。将其降低到这一成本的一小部分的一种选择是使用Langevin动态的未经调整的离散化来诉诸Mini-Batching,在这种情况下,只使用数据的随机分数来估计梯度。然而,这导致动态中的额外噪声,因此在马尔可夫链采样的不变度量上的偏差。我们倡导使用所谓的自适应Langevin动态,这是一种改进标准惯性Langevin动态,其动态摩擦力,可自动校正迷你批次引起的增加的噪声。我们调查假设适应性Langevin的假设(恒定协方差估计梯度的恒定协方差),这在贝叶斯推理的典型模型中不满足,并在这种情况下量化小型匹配诱导的偏差。我们还展示了如何扩展ADL,以便通过考虑根据参数的当前值来系统地减少后部分布的偏置。
translated by 谷歌翻译
对于由缺陷线性回归中的标签噪声引起的预期平均平方概率,我们证明了无渐近分布的下限。我们的下部结合概括了过度公共数据(内插)制度的类似已知结果。与最先前的作品相比,我们的分析适用于广泛的输入分布,几乎肯定的全排列功能矩阵,允许我们涵盖各种类型的确定性或随机特征映射。我们的下限是渐近的锐利,暗示在存在标签噪声时,缺陷的线性回归不会在任何这些特征映射中围绕内插阈值进行良好的。我们详细分析了强加的假设,并为分析(随机)特征映射提供了理论。使用此理论,我们可以表明我们的假设对于具有(Lebesgue)密度的输入分布以及随机深神经网络给出的特征映射,具有Sigmoid,Tanh,SoftPlus或Gelu等分析激活功能。作为进一步的例子,我们示出了来自随机傅里叶特征和多项式内核的特征映射也满足我们的假设。通过进一步的实验和分析结果,我们补充了我们的理论。
translated by 谷歌翻译
我们认为越来越复杂的矩阵去噪和贝叶斯最佳设置中的文章学习模型,在挑战性的政权中,在矩阵推断出与系统尺寸线性的排名增加。这与大多数现有的文献相比,与低秩(即常数级别)制度相关的文献相反。我们首先考虑一类旋转不变的矩阵去噪,使用来自随机矩阵理论的标准技术来计算的互动信息和最小均方误差。接下来,我们分析了字典学习的更具挑战性模式。为此,我们将复制方法与随机矩阵理论一起介绍了复制品方法的新组合,共同矩阵理论,Coined光谱副本方法。它允许我们猜测隐藏表示与字典学习问题的嘈杂数据之间的相互信息的变分形式,以及定量最佳重建误差的重叠。所提出的方法从$ \ theta(n ^ 2)$(矩阵条目)到$ \ theta(n)$(特征值或奇异值)减少自由度的数量,并产生的互信息的库仑气体表示让人想起物理学中的矩阵模型。主要成分是使用Harishchandra-Itzykson-Zuber球形积分,结合新的复制对称解耦Ansatz,在特定重叠矩阵的特征值(或奇异值)的概率分布的水平上。
translated by 谷歌翻译
我们合并计算力学的因果状态(预测等同历史)的定义与再现 - 内核希尔伯特空间(RKHS)表示推断。结果是一种广泛适用的方法,可直接从系统行为的观察中迁移因果结构,无论它们是否超过离散或连续事件或时间。结构表示 - 有限或无限状态内核$ \ epsilon $ -Machine - 由减压变换提取,其提供了有效的因果状态及其拓扑。以这种方式,系统动态由用于在因果状态上的随机(普通或部分)微分方程表示。我们介绍了一种算法来估计相关的演化运营商。平行于Fokker-Plank方程,它有效地发展了因果状态分布,并通过RKHS功能映射在原始数据空间中进行预测。我们展示了这些技术,以及他们的预测能力,在离散时间的离散时间离散 - 有限的无限值Markov订单流程,其中有限状态隐藏马尔可夫模型与(i)有限或(ii)不可数 - 无限因果态和(iii)连续时间,由热驱动的混沌流产生的连续值处理。该方法在存在不同的外部和测量噪声水平和非常高的维数据存在下鲁棒地估计因果结构。
translated by 谷歌翻译
最近在J. Math中引入的分配流程。成像和视觉58/2(2017)构成了一种高维动态系统,其在基本统计歧管上发展,并执行任何度量空间中给出的数据的上下文标记(分类)。给定图形的顶点索引数据点并定义邻域的系统。这些邻域与非负重量参数一起定义标签分配的演变的正则化,通过由信息几何的仿射电子连接引起的几何平均来定义对数据点的数量。关于进化游戏动态,分配流程可以被称为由几何平均耦合的复制器方程的大型系统。本文在重量参数上建立了保证连续时间分配流程的重量参数(标签)的融合,最多可忽略不计在实际数据的实际数据时不会遇到的情况。此外,我们对流动的吸引子分类并量化相应的吸引力盆地。这为分配流提供了会聚保证,该分配流程扩展到不同时间分配流程,这些流量是应用跑步-Kutta-munthe-KAAS方案的用于分配流的数值几何集成。若干反作用例说明违反条件可能需要关于上下文数据分类的分配流的不利行为。
translated by 谷歌翻译
我们研究了神经网络中平方损耗训练问题的优化景观和稳定性,但通用非线性圆锥近似方案。据证明,如果认为非线性圆锥近似方案是(以适当定义的意义)比经典线性近似方法更具表现力,并且如果存在不完美的标签向量,则在方位损耗的训练问题必须在其中不稳定感知其解决方案集在训练数据中的标签向量上不连续地取决于标签向量。我们进一步证明对这些不稳定属性负责的效果也是马鞍点出现的原因和杂散的局部最小值,这可能是从全球解决方案的任意遥远的,并且既不训练问题也不是训练问题的不稳定性通常,杂散局部最小值的存在可以通过向目标函数添加正则化术语来克服衡量近似方案中参数大小的目标函数。无论可实现的可实现性是否满足,后一种结果都被证明是正确的。我们表明,我们的分析特别适用于具有可变宽度的自由结插值方案和深层和浅层神经网络的培训问题,其涉及各种激活功能的任意混合(例如,二进制,六骨,Tanh,arctan,软标志, ISRU,Soft-Clip,SQNL,Relu,Lifley Relu,Soft-Plus,Bent Identity,Silu,Isrlu和ELU)。总之,本文的发现说明了神经网络和一般非线性圆锥近似仪器的改进近似特性以直接和可量化的方式与必须解决的优化问题的不期望的性质链接,以便训练它们。
translated by 谷歌翻译