联合学习(FL)是一种分布式机器学习方法,其中多个客户在不交换数据的情况下协作培训联合模型。尽管FL在数据隐私保护方面取得了前所未有的成功,但其对自由骑手攻击的脆弱性吸引了人们越来越多的关注。现有的防御能力可能对高度伪装或高百分比的自由骑手无效。为了应对这些挑战,我们从新颖的角度重新考虑防御,即模型重量不断发展的频率。从经验上讲,我们获得了一种新颖的见解,即在FL的训练中,模型权重的频率不断发展,自由骑机的频率和良性客户的频率显着不同的。受到这种见解的启发,我们提出了一种基于模型权重演化频率的新型防御方法,称为WEF-DEFENSE。特别是,我们在本地训练期间首先收集重量演变的频率(定义为WEF-MATRIX)。对于每个客户端,它将本地型号的WEF-Matrix与每个迭代的模型重量一起上传到服务器。然后,服务器根据WEF-Matrix的差异将自由骑士与良性客户端分开。最后,服务器使用个性化方法为相应的客户提供不同的全局模型。在五个数据集和五个模型上进行的全面实验表明,与最先进的基线相比,WEF防御能力更好。
translated by 谷歌翻译
最近出现的联邦学习(FL)是一个有吸引力的分布式学习框架,其中许多无线最终用户设备可以训练全局模型,数据仍然自动加载。与传统的机器学习框架相比,收集集中存储的用户数据,这为数据隐私带来了巨大的沟通负担和担忧,这种方法不仅可以保存网络带宽,还可以保护数据隐私。尽管前景有前景,但拜占庭袭击,传统分布式网络中的棘手威胁,也被发现对FL相当有效。在本文中,我们对佛罗里达州的抗议袭击进行了全面调查了捍卫拜占庭袭击的最先进战略。我们首先根据他们使用的技术为现有的防御解决方案提供分类法,然后是在整个板上的比较和讨论。然后,我们提出了一种新的拜占庭攻击方法,称为重量攻击,以击败这些防御计划,并进行实验以证明其威胁。结果表明,现有的防御解决方案虽然丰富,但仍远未完全保护FL。最后,我们表明体重攻击可能的可能对策,并突出了一些挑战和未来的研究方向,以减轻百灵鱼袭击杂志。
translated by 谷歌翻译
Federated Learning has emerged to cope with raising concerns about privacy breaches in using Machine or Deep Learning models. This new paradigm allows the leverage of deep learning models in a distributed manner, enhancing privacy preservation. However, the server's blindness to local datasets introduces its vulnerability to model poisoning attacks and data heterogeneity, tampering with the global model performance. Numerous works have proposed robust aggregation algorithms and defensive mechanisms, but the approaches are orthogonal to individual attacks or issues. FedCC, the proposed method, provides robust aggregation by comparing the Centered Kernel Alignment of Penultimate Layers Representations. The experiment results on FedCC demonstrate that it mitigates untargeted and targeted model poisoning or backdoor attacks while also being effective in non-Independently and Identically Distributed data environments. By applying FedCC against untargeted attacks, global model accuracy is recovered the most. Against targeted backdoor attacks, FedCC nullified attack confidence while preserving the test accuracy. Most of the experiment results outstand the baseline methods.
translated by 谷歌翻译
联合学习使不同的各方能够在服务器的编排下协作建立全球模型,同时将培训数据保留在客户的设备上。但是,当客户具有异质数据时,性能会受到影响。为了解决这个问题,我们假设尽管数据异质性,但有些客户的数据分布可以集群。在以前的方法中,为了群集客户端,服务器要求客户端同时发送参数。但是,在有大量参与者可能有限的参与者的情况下,这可能是有问题的。为了防止这种瓶颈,我们提出了FLIC(使用增量聚类的联合学习),其中服务器利用客户在联合培训期间发送的客户发送的更新,而不是要求他们同时发送参数。因此,除了经典的联合学习所需的内容外,服务器与客户之间没有任何其他沟通。我们从经验上证明了各种非IID案例,我们的方法成功地按照相同的数据分布将客户分组分组。我们还通过研究其能力在联邦学习过程的早期阶段对客户进行分配的能力来确定FLIC的局限性。我们进一步将对模型的攻击作为数据异质性的一种形式,并从经验上表明,即使恶意客户的比例高于50 \%,FLIC也是针对中毒攻击的强大防御。
translated by 谷歌翻译
联合学习(FL)允许多个客户端在私人数据上协作训练神经网络(NN)模型,而不会显示数据。最近,已经介绍了针对FL的几种针对性的中毒攻击。这些攻击将后门注入到所产生的模型中,允许对抗控制的输入被错误分类。抵抗后门攻击的现有对策效率低,并且通常仅旨在排除偏离聚合的偏离模型。然而,这种方法还删除了具有偏离数据分布的客户端的良性模型,导致聚合模型对这些客户端执行不佳。为了解决这个问题,我们提出了一种深入的模型过滤方法,用于减轻后门攻击。它基于三种新颖的技术,允许表征用于培训模型更新的数据的分布,并寻求测量NNS内部结构和输出中的细粒度差异。使用这些技术,DeepSight可以识别可疑的模型更新。我们还开发了一种可以准确集群模型更新的方案。结合两个组件的结果,DeepSight能够识别和消除含有高攻击模型的模型集群,具有高攻击影响。我们还表明,可以通过现有的基于重量剪切的防御能力减轻可能未被发现的中毒模型的后门贡献。我们评估了深度的性能和有效性,并表明它可以减轻最先进的后门攻击,对模型对良性数据的性能的影响忽略不计。
translated by 谷歌翻译
Federated Learning (FL) is a scheme for collaboratively training Deep Neural Networks (DNNs) with multiple data sources from different clients. Instead of sharing the data, each client trains the model locally, resulting in improved privacy. However, recently so-called targeted poisoning attacks have been proposed that allow individual clients to inject a backdoor into the trained model. Existing defenses against these backdoor attacks either rely on techniques like Differential Privacy to mitigate the backdoor, or analyze the weights of the individual models and apply outlier detection methods that restricts these defenses to certain data distributions. However, adding noise to the models' parameters or excluding benign outliers might also reduce the accuracy of the collaboratively trained model. Additionally, allowing the server to inspect the clients' models creates a privacy risk due to existing knowledge extraction methods. We propose CrowdGuard, a model filtering defense, that mitigates backdoor attacks by leveraging the clients' data to analyze the individual models before the aggregation. To prevent data leaks, the server sends the individual models to secure enclaves, running in client-located Trusted Execution Environments. To effectively distinguish benign and poisoned models, even if the data of different clients are not independently and identically distributed (non-IID), we introduce a novel metric called HLBIM to analyze the outputs of the DNN's hidden layers. We show that the applied significance-based detection algorithm combined can effectively detect poisoned models, even in non-IID scenarios. We show in our extensive evaluation that CrowdGuard can effectively mitigate targeted poisoning attacks and achieve in various scenarios a True-Positive-Rate of 100% and a True-Negative-Rate of 100%.
translated by 谷歌翻译
Federated Learning is a distributed machine learning framework designed for data privacy preservation i.e., local data remain private throughout the entire training and testing procedure. Federated Learning is gaining popularity because it allows one to use machine learning techniques while preserving privacy. However, it inherits the vulnerabilities and susceptibilities raised in deep learning techniques. For instance, Federated Learning is particularly vulnerable to data poisoning attacks that may deteriorate its performance and integrity due to its distributed nature and inaccessibility to the raw data. In addition, it is extremely difficult to correctly identify malicious clients due to the non-Independently and/or Identically Distributed (non-IID) data. The real-world data can be complex and diverse, making them hardly distinguishable from the malicious data without direct access to the raw data. Prior research has focused on detecting malicious clients while treating only the clients having IID data as benign. In this study, we propose a method that detects and classifies anomalous clients from benign clients when benign ones have non-IID data. Our proposed method leverages feature dimension reduction, dynamic clustering, and cosine similarity-based clipping. The experimental results validates that our proposed method not only classifies the malicious clients but also alleviates their negative influences from the entire procedure. Our findings may be used in future studies to effectively eliminate anomalous clients when building a model with diverse data.
translated by 谷歌翻译
联合学习(FL)是一项广泛采用的分布式学习范例,在实践中,打算在利用所有参与者的整个数据集进行培训的同时保护用户的数据隐私。在FL中,多种型号在用户身上独立培训,集中聚合以在迭代过程中更新全局模型。虽然这种方法在保护隐私方面是优异的,但FL仍然遭受攻击或拜占庭故障等质量问题。最近的一些尝试已经解决了对FL的强大聚集技术的这种质量挑战。然而,最先进的(SOTA)强大的技术的有效性尚不清楚并缺乏全面的研究。因此,为了更好地了解这些SOTA流域的当前质量状态和挑战在存在攻击和故障的情况下,我们进行了大规模的实证研究,以研究SOTA FL的质量,从多个攻击角度,模拟故障(通过突变运算符)和聚合(防御)方法。特别是,我们对两个通用图像数据集和一个现实世界联邦医学图像数据集进行了研究。我们还系统地调查了攻击用户和独立和相同分布的(IID)因子,每个数据集的攻击/故障的分布对鲁棒性结果的影响。经过496个配置进行大规模分析后,我们发现每个用户的大多数突变者对最终模型具有可忽略不计的影响。此外,选择最强大的FL聚合器取决于攻击和数据集。最后,我们说明了可以实现几乎在所有攻击和配置上的任何单个聚合器以及具有简单集合模型的所有攻击和配置的常用解决方案的通用解决方案。
translated by 谷歌翻译
由于联邦学习(FL)的分布性质,研究人员发现FL容易受到后门攻击的影响,该攻击旨在将子任务注入FL而不破坏主要任务的性能。当在FL模型收敛上注入时,单发后门攻击在主要任务和后门子任务上都可以达到高度精度。但是,早期注射的单发后门攻击是无效的,因为:(1)由于正常局部更新的稀释效果,在注射时未达到最大的后门效果; (2)后门效应迅速下降,因为后门将被新的普通本地更新所覆盖。在本文中,我们利用FL模型信息泄漏加强了早期注射的单发后门攻击。我们表明,如果客户在模拟整个人群的分布和梯度的数据集上进行训练,则可以加快FL收敛速度。基于这一观察结果,我们提出了两阶段的后门攻击,其中包括随后的后门攻击的初步阶段。在初步阶段,受攻击者控制的客户首先启动了整个人口分布推理攻击,然后在本地制作的数据集上进行训练,该数据集与梯度和推断分布保持一致。从初步阶段中受益,后来注射的后门实现了更好的有效性,因为后门效应不太可能被普通模型更新稀释。在各种数据异质性设置下,在MNIST数据集上进行了广泛的实验,以评估拟议的后门攻击的有效性。结果表明,即使有防御机制,该提议的后门以成功率和寿命都优于现有的后门攻击。
translated by 谷歌翻译
Non-IID data distribution across clients and poisoning attacks are two main challenges in real-world federated learning systems. While both of them have attracted great research interest with specific strategies developed, no known solution manages to address them in a unified framework. To jointly overcome both challenges, we propose SmartFL, a generic approach that optimizes the server-side aggregation process with a small clean server-collected proxy dataset (e.g., around one hundred samples, 0.2% of the dataset) via a subspace training technique. Specifically, the aggregation weight of each participating client at each round is optimized using the server-collected proxy data, which is essentially the optimization of the global model in the convex hull spanned by client models. Since at each round, the number of tunable parameters optimized on the server side equals the number of participating clients (thus independent of the model size), we are able to train a global model with massive parameters using only a small amount of proxy data. We provide theoretical analyses of the convergence and generalization capacity for SmartFL. Empirically, SmartFL achieves state-of-the-art performance on both federated learning with non-IID data distribution and federated learning with malicious clients. The source code will be released.
translated by 谷歌翻译
由于其在广泛的协作学习任务中的成功,联邦学习框架的普及程度越来越多,也引起了有关学习模型的某些安全问题,因为恶意客户可能参与学习过程。因此,目的是消除恶意参与者的影响,并确保最终模型是可信赖的。关于拜占庭攻击的一个常见观察结果是,客户的模型/更新之间的差异越高,隐藏攻击的空间就越多。为此,最近已经表明,通过利用动量,从而减少了方差,可以削弱已知的拜占庭攻击的强度。居中的剪裁框架(ICML 2021)进一步表明,除了降低差异外,从上一个迭代中的动量项可以用作中和拜占庭式攻击并显示出对知名攻击的令人印象深刻的表现。但是,在这项工作的范围内,我们表明居中的剪裁框架具有某些漏洞,并且可以根据这些漏洞来修订现有的攻击,以规避居中的剪裁防御。因此,我们介绍了一种设计攻击的策略,以规避居中的剪裁框架,并通过将测试准确性降低到最佳场景中的5-40,从而在数值上说明了其针对中心剪裁的有效性以及其他已知的防御策略。
translated by 谷歌翻译
联合学习(FL)根据多个本地客户端协同聚合共享全球模型,同时保持培训数据分散以保护数据隐私。但是,标准的FL方法忽略了嘈杂的客户问题,这可能会损害聚合模型的整体性能。在本文中,我们首先分析了嘈杂的客户声明,然后用不同的噪声分布模型噪声客户端(例如,Bernoulli和截断的高斯分布)。要使用嘈杂的客户,我们提出了一个简单但有效的FL框架,名为联邦嘈杂的客户学习(FED-NCL),它是一个即插即用算法,并包含两个主要组件:动态的数据质量测量(DQM)量化每个参与客户端的数据质量,以及噪声鲁棒聚合(NRA),通过共同考虑本地训练数据和每个客户端的数据质量来自适应地聚合每个客户端的本地模型。我们的FED-NCL可以轻松应用于任何标准的流行流以处理嘈杂的客户端问题。各种数据集的实验结果表明,我们的算法提高了具有嘈杂客户端的不同现实系统的性能。
translated by 谷歌翻译
联合学习(FL)允许相互不信任的客户可以协作培训通用的机器学习模型,而无需共享其私人/专有培训数据。不幸的是,FL很容易受到恶意客户的中毒,他们旨在通过在FL培训过程中发送恶意模型更新来阻碍常见训练的模型的准确性。我们认为,对现有FL系统的中毒攻击成功的关键因素是客户可用的模型更新空间,使恶意客户可以通过解决优化问题来搜索最有毒的模型更新。为了解决这个问题,我们提出了联合排名学习(FRL)。 FRL将标准FL中的模型参数更新(浮点数连续空间)从模型参数更新(一个连续的空间)缩小到参数排名的空间(整数值的离散空间)。为了能够使用参数等级(而不是参数权重)训练全球模型,FRL利用了最近的SuperMasks培训机制的想法。具体而言,FRL客户端根据其本地培训数据对随机初始化的神经网络(由服务器提供)的参数进行排名。 FRL Server使用投票机制来汇总客户在每个培训时期提交的参数排名,以生成下一个培训时期的全球排名。从直觉上讲,我们基于投票的聚合机制阻止中毒客户对全球模型进行重大的对抗性修改,因为每个客户都会进行一次投票!我们通过分析证明和实验证明了FRL对中毒的鲁棒性。我们还显示了FRL的高沟通效率。我们的实验证明了FRL在现实世界中的优势。
translated by 谷歌翻译
联合学习允许多个参与者在不公开数据隐私的情况下协作培训高效模型。但是,这种分布式的机器学习培训方法容易受到拜占庭客户的攻击,拜占庭客户通过修改模型或上传假梯度来干扰全球模型的训练。在本文中,我们提出了一种基于联邦学习(CMFL)的新型无服务器联合学习框架委员会机制,该机制可以确保算法具有融合保证的鲁棒性。在CMFL中,设立了一个委员会系统,以筛选上载已上传的本地梯度。 The committee system selects the local gradients rated by the elected members for the aggregation procedure through the selection strategy, and replaces the committee member through the election strategy.基于模型性能和防御的不同考虑,设计了两种相反的选择策略是为了精确和鲁棒性。广泛的实验表明,与典型的联邦学习相比,与传统的稳健性相比,CMFL的融合和更高的准确性比传统的稳健性,以分散的方法的方式获得了传统的耐受性算法。此外,我们理论上分析并证明了在不同的选举和选择策略下CMFL的收敛性,这与实验结果一致。
translated by 谷歌翻译
联合学习(FL)容易受到模型中毒攻击的影响,在该攻击中,恶意客户通过将操纵模型更新发送到服务器来破坏全局模型。现有的防御措施主要依靠拜占庭式抗体方法,即使某些客户是恶意的,旨在学习准确的全球模型。但是,在实践中,他们只能抵抗少数恶意客户。如何与大量恶意客户抗衡模型中毒攻击仍然是一个公开挑战。我们的fldetector通过检测恶意客户来应对这一挑战。 FLDETECTOR旨在检测和删除大多数恶意客户,以便拜占庭式的fl方法可以使用其余客户学习准确的全球模型。我们的主要观察结果是,在模型中毒攻击中,在多次迭代中的客户更新的模型更新是不一致的。因此,FLDetector通过检查其模型更高的一致性来检测恶意客户端。大致来说,服务器根据其历史模型更新使用Cauchy Mean Valie Therorem和L-BFG预测客户端的模型更新在多个迭代中不一致。我们在三个基准数据集上进行的广泛实验表明,FLDETECTOR可以准确检测到多种最新模型中毒攻击中的恶意客户。在删除了被检测到的恶意客户端后,现有的拜占庭式FL方法可以学习准确的全球模型。
translated by 谷歌翻译
With the development and progress of science and technology, the Internet of Things(IoT) has gradually entered people's lives, bringing great convenience to our lives and improving people's work efficiency. Specifically, the IoT can replace humans in jobs that they cannot perform. As a new type of IoT vehicle, the current status and trend of research on Unmanned Aerial Vehicle(UAV) is gratifying, and the development prospect is very promising. However, privacy and communication are still very serious issues in drone applications. This is because most drones still use centralized cloud-based data processing, which may lead to leakage of data collected by drones. At the same time, the large amount of data collected by drones may incur greater communication overhead when transferred to the cloud. Federated learning as a means of privacy protection can effectively solve the above two problems. However, federated learning when applied to UAV networks also needs to consider the heterogeneity of data, which is caused by regional differences in UAV regulation. In response, this paper proposes a new algorithm FedBA to optimize the global model and solves the data heterogeneity problem. In addition, we apply the algorithm to some real datasets, and the experimental results show that the algorithm outperforms other algorithms and improves the accuracy of the local model for UAVs.
translated by 谷歌翻译
跨不同边缘设备(客户)局部数据的分布不均匀,导致模型训练缓慢,并降低了联合学习的准确性。幼稚的联合学习(FL)策略和大多数替代解决方案试图通过加权跨客户的深度学习模型来实现更多公平。这项工作介绍了在现实世界数据集中遇到的一种新颖的非IID类型,即集群键,其中客户组具有具有相似分布的本地数据,从而导致全局模型收敛到过度拟合的解决方案。为了处理非IID数据,尤其是群集串数据的数据,我们提出了FedDrl,这是一种新型的FL模型,它采用了深厚的强化学习来适应每个客户的影响因素(将用作聚合过程中的权重)。在一组联合数据集上进行了广泛的实验证实,拟议的FEDDR可以根据CIFAR-100数据集的平均平均为FedAvg和FedProx方法提高了有利的改进,例如,高达4.05%和2.17%。
translated by 谷歌翻译
作为一种有希望的隐私机器学习方法,联合学习(FL)可以使客户跨客户培训,而不会损害其机密的本地数据。但是,现有的FL方法遇到了不均分布数据的推理性能低的问题,因为它们中的大多数依赖于联合平均(FIDAVG)基于联合的聚合。通过以粗略的方式平均模型参数,FedAvg将局部模型的个体特征黯然失色,这极大地限制了FL的推理能力。更糟糕的是,在每一轮FL培训中,FedAvg向客户端向客户派遣了相同的初始本地模型,这很容易导致对最佳全局模型的局限性搜索。为了解决上述问题,本文提出了一种新颖有效的FL范式,名为FEDMR(联合模型重组)。与传统的基于FedAvg的方法不同,FEDMR的云服务器将收集到的本地型号的每一层层混合,并重组它们以实现新的模型,以供客户端培训。由于在每场FL比赛中进行了细粒度的模型重组和本地培训,FEDMR可以迅速为所有客户找出一个全球最佳模型。全面的实验结果表明,与最先进的FL方法相比,FEDMR可以显着提高推理准确性而不会引起额外的通信开销。
translated by 谷歌翻译
Split Learning (SL) and Federated Learning (FL) are two prominent distributed collaborative learning techniques that maintain data privacy by allowing clients to never share their private data with other clients and servers, and fined extensive IoT applications in smart healthcare, smart cities, and smart industry. Prior work has extensively explored the security vulnerabilities of FL in the form of poisoning attacks. To mitigate the effect of these attacks, several defenses have also been proposed. Recently, a hybrid of both learning techniques has emerged (commonly known as SplitFed) that capitalizes on their advantages (fast training) and eliminates their intrinsic disadvantages (centralized model updates). In this paper, we perform the first ever empirical analysis of SplitFed's robustness to strong model poisoning attacks. We observe that the model updates in SplitFed have significantly smaller dimensionality as compared to FL that is known to have the curse of dimensionality. We show that large models that have higher dimensionality are more susceptible to privacy and security attacks, whereas the clients in SplitFed do not have the complete model and have lower dimensionality, making them more robust to existing model poisoning attacks. Our results show that the accuracy reduction due to the model poisoning attack is 5x lower for SplitFed compared to FL.
translated by 谷歌翻译
拜占庭式联合学习(FL)旨在对抗恶意客户并培训准确的全球模型,同时保持极低的攻击成功率。然而,大多数现有系统仅在诚实/半hon最达克的多数设置中都具有强大的功能。 FLTRUST(NDSS '21)将上下文扩展到对客户的恶意多数,但在训练之前,应在训练之前为服务器提供辅助数据集,以便过滤恶意输入。私人火焰/flguard(Usenix '22)提供了一种解决方案,以确保在半多数上下文中既有稳健性和更新机密性。到目前为止,不可能平衡恶意背景,鲁棒性和更新机密性之间的权衡。为了解决这个问题,我们提出了一种新颖的拜占庭式bybust和隐私的FL系统,称为简介,以捕获恶意的少数群体和多数服务器和客户端。具体而言,基于DBSCAN算法,我们设计了一种通过成对调整的余弦相似性聚类的新方法,以提高聚类结果的准确性。为了阻止多数攻击恶意的攻击,我们开发了一种称为模型分割的算法,在该算法中,同一集群中的本地更新聚集在一起,并且将聚合正确地发送回相应的客户端。我们还利用多种密码工具来执行聚类任务,而无需牺牲培训正确性并更新机密性。我们介绍了详细的安全证明和经验评估以及简要的收敛分析。实验结果表明,简介的测试精度实际上接近FL基线(平均为0.8%的差距)。同时,攻击成功率约为0%-5%。我们进一步优化了设计,以便可以分别降低{67%-89.17%和66.05%-68.75%}的通信开销和运行时。
translated by 谷歌翻译