许多应用程序和研究项目中出现了时间相关的二次最小化(TDQM)问题。据报道,归零神经网络(ZnN)模型可以有效解决TDQM问题。然而,对于缺乏自适应系数和集成增强术语的联合动作机制,限制了现有ZNN模型的会聚和鲁棒性能。因此,在本文中提出了具有集成术语的残余基适应系数归零神经网络(RACZNN)模型,用于解决TDQM问题。提出了自适应系数来提高收敛性能,嵌入集成术语以确保RACZNN模型可以在通过变体测量噪声扰乱时保持可靠的鲁棒性。与最先进的模型相比,建议的Racznn模型拥有更快的融合和更可靠的鲁棒性。然后,提供定理以证明RACZNN模型的融合。最后,在本文中设计和执行相应的数值实验,以验证所提出的RACZNN模型的性能。
translated by 谷歌翻译
收缩理论是一种分析工具,用于研究以均匀的正面矩阵定义的收缩度量下的非自主(即,时变)非线性系统的差动动力学,其存在导致增量指数的必要和充分表征多种溶液轨迹彼此相互稳定性的稳定性。通过使用平方差分长度作为Lyapunov样功能,其非线性稳定性分析向下沸腾以找到满足以表达为线性矩阵不等式的稳定条件的合适的收缩度量,表明可以在众所周知的线性系统之间绘制许多平行线非线性系统理论与收缩理论。此外,收缩理论利用了与比较引理结合使用的指数稳定性的优越稳健性。这产生了基于神经网络的控制和估计方案的急需安全性和稳定性保证,而不借助使用均匀渐近稳定性的更涉及的输入到状态稳定性方法。这种独特的特征允许通过凸优化来系统构造收缩度量,从而获得了由于扰动和学习误差而在外部扰动的时变的目标轨迹和解决方案轨迹之间的距离上的明确指数界限。因此,本文的目的是介绍了收缩理论的课程概述及其在确定性和随机系统的非线性稳定性分析中的优点,重点导出了各种基于学习和数据驱动的自动控制方法的正式鲁棒性和稳定性保证。特别是,我们提供了使用深神经网络寻找收缩指标和相关控制和估计法的技术的详细审查。
translated by 谷歌翻译
Accurate path following is challenging for autonomous robots operating in uncertain environments. Adaptive and predictive control strategies are crucial for a nonlinear robotic system to achieve high-performance path following control. In this paper, we propose a novel learning-based predictive control scheme that couples a high-level model predictive path following controller (MPFC) with a low-level learning-based feedback linearization controller (LB-FBLC) for nonlinear systems under uncertain disturbances. The low-level LB-FBLC utilizes Gaussian Processes to learn the uncertain environmental disturbances online and tracks the reference state accurately with a probabilistic stability guarantee. Meanwhile, the high-level MPFC exploits the linearized system model augmented with a virtual linear path dynamics model to optimize the evolution of path reference targets, and provides the reference states and controls for the low-level LB-FBLC. Simulation results illustrate the effectiveness of the proposed control strategy on a quadrotor path following task under unknown wind disturbances.
translated by 谷歌翻译
现有的数据驱动和反馈流量控制策略不考虑实时数据测量的异质性。此外,对于缺乏数据效率,传统的加固学习方法(RL)方法通常会缓慢收敛。此外,常规的最佳外围控制方案需要对系统动力学的精确了解,因此对内源性不确定性会很脆弱。为了应对这些挑战,这项工作提出了一种基于不可或缺的增强学习(IRL)的方法来学习宏观交通动态,以进行自适应最佳周边控制。这项工作为运输文献做出了以下主要贡献:(a)开发连续的时间控制,并具有离散增益更新以适应离散时间传感器数据。 (b)为了降低采样复杂性并更有效地使用可用数据,将体验重播(ER)技术引入IRL算法。 (c)所提出的方法以“无模型”方式放松模型校准的要求,该方式可以稳健地进行建模不确定性,并通过数据驱动的RL算法增强实时性能。 (d)通过Lyapunov理论证明了基于IRL的算法和受控交通动力学的稳定性的收敛性。最佳控制定律被参数化,然后通过神经网络(NN)近似,从而缓解计算复杂性。在不需要模型线性化的同时,考虑了状态和输入约束。提出了数值示例和仿真实验,以验证所提出方法的有效性和效率。
translated by 谷歌翻译
该论文提出了两种控制方法,用于用微型四轮驱动器进行反弹式操纵。首先,对专门为反转设计设计的现有前馈控制策略进行了修订和改进。使用替代高斯工艺模型的贝叶斯优化通过在模拟环境中反复执行翻转操作来找到最佳运动原语序列。第二种方法基于闭环控制,它由两个主要步骤组成:首先,即使在模型不确定性的情况下,自适应控制器也旨在提供可靠的参考跟踪。控制器是通过通过测量数据调整的高斯过程来增强无人机的标称模型来构建的。其次,提出了一种有效的轨迹计划算法,该算法仅使用二次编程来设计可行的轨迹为反弹操作设计。在模拟和使用BitCraze Crazyflie 2.1四肢旋转器中对两种方法进行了分析。
translated by 谷歌翻译
这项研究提出了用于完善神经网络参数或进入连续时间动态系统的控制功能的增量校正方法,以提高解决方案精度,以满足对性能输出变量放置的临时点约束。所提出的方法是将其参数基线围绕基线值的动力学线性化,然后求解将扰动轨迹传输到特定时间点(即临时点)处所需的纠正输入。根据要调整的决策变量的类型,参数校正和控制功能校正方法将开发出来。这些增量校正方法可以用作补偿实时应用中预训练的神经网络的预测错误的手段,在实时应用中,必须在规定的时间点上高精度预测动态系统的准确性。在这方面,在线更新方法可用于增强有限摩托控制的整体靶向准确性,但使用神经政策受到点约束。数值示例证明了拟议方法在火星上的动力下降问题中的应用中的有效性。
translated by 谷歌翻译
本文介绍了一类时变植物的自适应控制的新参数估计算法。该算法的主要特征是时变的学习速率的矩阵,其使得每当满足激励条件时,使参数估计误差轨迹能够朝向紧凑型朝向紧凑型呈现快速。该算法用于在存在未知参数的大类问题中,并且是时变的。结果表明,该算法保证了系统的状态和参数误差的全局界限,并避免了用于构造密钥回归信号的经常使用过滤方法。另外,在存在有限和持久的激励的情况下,提供了这些误差趋向于紧凑型朝向紧凑型趋向于紧凑型的时间间隔。与时变忘记因素相比,投影运算符用于确保学习率矩阵的界限。提供了数值模拟以补充理论分析。
translated by 谷歌翻译
迭代线性二次调节器(ILQR)在解决非线性系统模型的轨迹优化问题方面已广泛普及。但是,作为一种基于模型的拍摄方法,它在很大程度上依赖于准确的系统模型来更新最佳控制动作和通过正向集成确定的轨迹,从而变得容易受到不可避免的模型的影响。最近,针对最佳控制问题的基于学习的方法进行的大量研究工作在解决未知系统模型方面已经取得了显着发展,尤其是当系统与环境具有复杂的相互作用时。然而,通常需要一个深层的神经网络来拟合大量的采样数据。在这项工作中,我们提出了神经-ILQR,这是一种在不受约束的控制空间上进行学习的拍摄方法,其中使用简单结构的神经网络代表局部系统模型。在此框架中,通过同时完善最佳策略和神经网络迭代,可以实现轨迹优化任务,而无需依靠系统模型的先验知识。通过对两项说明性控制任务的全面评估,在系统模型中存在不准确性的情况下,提出的方法显示出胜过常规ILQR。
translated by 谷歌翻译
形成控制问题是群体智能领域中最关心的主题之一,通常通过常规数学方法来解决。然而,在本文中,我们提出了一种元疗法方法,该方法利用了一种自然的共同进化策略来解决一群导弹的形成控制问题。导弹群是由具有异质参考目标的二阶系统建模的,并将指数误差函数作为目标函数,以使群体融合到满足某些形成要求的最佳平衡状态。为了关注本地最佳和不稳定进化的问题,我们纳入了一种新颖的基于模型的政策约束和人口适应策略,从而大大减轻了绩效退化。通过在网络通信领域中应用Molloy reed标准,我们开发了一种自适应拓扑方法,该方法可以通过理论和实验验证节点失败及其有效性下的连通性及其有效性。实验结果有助于提议的形成控制方法的有效性。更重要的是,我们表明将通用形成控制问题视为马尔可夫决策过程(MDP)并通过迭代学习解决它是可行的。
translated by 谷歌翻译
In contrast to the control-theoretic methods, the lack of stability guarantee remains a significant problem for model-free reinforcement learning (RL) methods. Jointly learning a policy and a Lyapunov function has recently become a promising approach to ensuring the whole system with a stability guarantee. However, the classical Lyapunov constraints researchers introduced cannot stabilize the system during the sampling-based optimization. Therefore, we propose the Adaptive Stability Certification (ASC), making the system reach sampling-based stability. Because the ASC condition can search for the optimal policy heuristically, we design the Adaptive Lyapunov-based Actor-Critic (ALAC) algorithm based on the ASC condition. Meanwhile, our algorithm avoids the optimization problem that a variety of constraints are coupled into the objective in current approaches. When evaluated on ten robotic tasks, our method achieves lower accumulated cost and fewer stability constraint violations than previous studies.
translated by 谷歌翻译
本文提出了一种新型的固定时间积分滑动模式控制器,以用于增强物理人类机器人协作。所提出的方法结合了遵守入学控制的外部力量和对整体滑动模式控制(ISMC)不确定性的高度鲁棒性的好处,从而使系统可以在不确定的环境中与人类伴侣合作。首先,在ISMC中应用固定时间滑动表面,以使系统的跟踪误差在固定时间内收敛,无论初始条件如何。然后,将固定的后台控制器(BSP)集成到ISMC中,作为标称控制器,以实现全局固定时间收敛。此外,为了克服奇异性问题,设计并集成到控制器中,这对于实际应用很有用。最后,提出的控制器已被验证,用于具有不确定性和外部力量的两连锁机器人操纵器。结果表明,在跟踪误差和收敛时间的意义上,所提出的控制器是优越的,同时,可以在共享工作区中遵守人类运动。
translated by 谷歌翻译
来自视觉信息的特征点的全局收敛位置观察者的设计是一个具有挑战性的问题,特别是对于仅具有惯性测量的情况,并且没有均匀可观察性的假设,这仍然长时间保持开放。我们在本文中提供了解决问题的解决方案,假设只有特征点的轴承,以及机器人的偏置线性加速度和机器人的旋转速度 - 都可以使用。此外,与现有相关结果相反,我们不需要重力常数的值。所提出的方法在最近开发的基于参数估计的观察者(Ortega等人,Syst。控制。Lett。,Vol.85,2015)及其在我们以前的工作中的矩阵群体的延伸。给出了观察者收敛的机器人轨迹的条件,这些条件比激发和均匀完全可观察性条件的标准持久性严格弱。最后,我们将建议的设计应用于视觉惯性导航问题。还提出了仿真结果以说明我们的观察者设计。
translated by 谷歌翻译
非线性自适应控制理论中的一个关键假设是系统的不确定性可以在一组已知基本函数的线性跨度中表示。虽然该假设导致有效的算法,但它将应用限制为非常特定的系统类别。我们介绍一种新的非参数自适应算法,其在参数上学习无限尺寸密度,以取消再现内核希尔伯特空间中的未知干扰。令人惊讶的是,所产生的控制输入承认,尽管其底层无限尺寸结构,但是尽管它的潜在无限尺寸结构实现了其实施的分析表达。虽然这种自适应输入具有丰富和富有敏感性的 - 例如,传统的线性参数化 - 其计算复杂性随时间线性增长,使其比其参数对应力相对较高。利用随机傅里叶特征的理论,我们提供了一种有效的随机实现,该实现恢复了经典参数方法的复杂性,同时可透明地保留非参数输入的表征性。特别地,我们的显式范围仅取决于系统的基础参数,允许我们所提出的算法有效地缩放到高维系统。作为该方法的说明,我们展示了随机近似算法学习由牛顿重力交互的十点批量组成的60维系统的预测模型的能力。
translated by 谷歌翻译
在本文中,我们提出了一个新型的非线性观察者,称为神经观察者,以通过将神经网络(NN)引入观察者的设计,以实现线性时间传播(LTI)系统的观察任务和不确定的非线性系统。通过探索NN代表向NN映射矢量的方法,我们从LTI和不确定的非线性系统中得出了稳定性分析(例如,指数收敛速率),这些系统仅使用线性矩阵不平等(LMIS)为解决观察问题铺平了道路。值得注意的是,为不确定系统设计的神经观察者基于主动扰动拒绝控制(ADRC)的意识形态,该思想可以实时测量不确定性。 LMI结果也很重要,因为我们揭示了LMI溶液存在系统矩阵的可观察性和可控性。最后,我们在三个模拟案例上验证神经观察者的可用性,包括X-29A飞机模型,非线性摆和四轮转向车辆。
translated by 谷歌翻译
由于过去几十年中获得的大量技术改进,因此可以使用机器人车进行水下勘探。这项工作描述了用于基于水下车辆的动态定位系统的开发。采用的方法是使用Lyapunov稳定性理论开发的,并通过基于神经网络的算法增强了不确定性和干扰补偿。通过数值模拟评估所提出的控制方案的性能。
translated by 谷歌翻译
在本文中,我们开辟了基于路径积分(PI)最优控制理论的可视伺服系统的新途径,其中可以将非线性部分微分方程(PDE)转换为使用Feynman的所有可能的轨迹的期望-KAC(FK)引理。更精确地,我们提出了基于采样的模型预测控制(即,模型预测路径积分(MPPI)控制)算法,提出了MPPI-VS控制策略,实时和无反转控制策略(即,模型预测路径积分(MPPI)控制)算法 - 基于,3D点和基于位置的可视伺服技术,考虑到系统约束(例如可见性,3D和控制约束)以及与机器人和相机模型相关联的参数不确定性以及测量噪声。与经典的视觉伺服控制方案相反,我们的控制策略直接利用交互矩阵的近似,而无需估计交互矩阵反转或执行伪反转。我们在带有引导摄像机的6-DOF笛卡尔机器人上验证MPPI-VS控制策略以及基于图像平面中的四个点作为视觉特征的常规摄像机。与经典计划相比,更好地评估和展示所提出的控制策略的鲁棒性和潜在优势,进行了各种操作条件下的密集模拟,然后讨论。所获得的结果证明了所提出的方案在容易与系统限制中应对的有效性和能力,以及在相机参数和测量中存在大误差的鲁棒性。
translated by 谷歌翻译
在本文中,我们提出了一种新颖的,通用的数据驱动方法,用于伺服控制连续机器人的3-D形状,并嵌入了纤维bragg光栅(FBG)传感器。 3D形状感知和控制技术的发展对于连续机器人在手术干预中自主执行任务至关重要。但是,由于连续机器人的非线性特性,主要难度在于它们的建模,尤其是对于具有可变刚度的软机器人。为了解决这个问题,我们通过利用FBG形状反馈和神经网络(NNS)提出了一个新的健壮自适应控制器,该反馈和神经网络(NNS)可以在线估算连续机器人的未知模型,并说明了意外的干扰以及NN近似错误,该错误表现出适应性行为对适应性行为呈现没有先验数据探索的未建模系统。基于新的复合适应算法,Lyapunov理论证明了具有NNS学习参数的闭环系统的渐近收敛。为了验证所提出的方法,我们通过使用两个连续机器人进行了一项全面的实验研究,这些连续机器人都与多核FBG集成,包括机器人辅助结肠镜和多部分可扩展的软操纵剂。结果表明,在各种非结构化环境以及幻影实验中,我们的控制器的可行性,适应性和优越性。
translated by 谷歌翻译
我们提出了一种依赖于大约解决最小化问题的orcacles的马鞍点优化方法。我们在强凸凹面上分析其收敛性,并向全球最大马鞍点显示线性趋同。根据收敛分析,我们开发了一种适应学习率的启发式方法。显示使用(1 + 1)-cma-es作为最小化Oracle的开发方法的实施方式,即普通话-CMA-es,优于几种现有的测试问题方法。数值评估证实了理论会聚速率的紧密性以及学习率适应机制的效率。作为实际问题的一个例子,建议的优化方法应用于模型不确定性下的自动停泊控制问题,显示其在获得解决方案到不确定性的解决方案中的用处。
translated by 谷歌翻译
Dexterous and autonomous robots should be capable of executing elaborated dynamical motions skillfully. Learning techniques may be leveraged to build models of such dynamic skills. To accomplish this, the learning model needs to encode a stable vector field that resembles the desired motion dynamics. This is challenging as the robot state does not evolve on a Euclidean space, and therefore the stability guarantees and vector field encoding need to account for the geometry arising from, for example, the orientation representation. To tackle this problem, we propose learning Riemannian stable dynamical systems (RSDS) from demonstrations, allowing us to account for different geometric constraints resulting from the dynamical system state representation. Our approach provides Lyapunov-stability guarantees on Riemannian manifolds that are enforced on the desired motion dynamics via diffeomorphisms built on neural manifold ODEs. We show that our Riemannian approach makes it possible to learn stable dynamical systems displaying complicated vector fields on both illustrative examples and real-world manipulation tasks, where Euclidean approximations fail.
translated by 谷歌翻译
在过去的几十年中,对生物启发的智能及其对机器人技术的应用非常关注。本文对生物启发的智能进行了全面的调查,重点是神经动力学方法,尤其是对自主机器人系统的路径计划和控制。首先,引入了以生物启发的分流模型及其变体(添加剂模型和门控偶极模型),并详细介绍其主要特征。然后,回顾了实时路径计划和各种机器人系统控制的两个主要神经动力学应用。一个以神经动力学模型为特征的生物启发的神经网络框架,用于移动机器人,清洁机器人和水下机器人。生物启发的神经网络已在无碰撞导航和合作中广泛使用,没有任何学习程序,全球成本功能以及动态环境的先验知识。此外,还进一步讨论了针对各种机器人系统的生物启发的后台控制器,这些控制器能够在发生较大的初始跟踪误差时消除速度跳跃。最后,本文讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译