过去,现实世界中社交网络的图表错过了两个重要元素:连接的多重性和表示时间。为此,在本文中,我们为社交网络提供了一个新的动态异质图表示,其中包括图形的每个组件中的时间,即节点和边缘,每种捕获异质性的不同类型。我们通过提出四个与时间有关的查询和深度学习问题来说明这种表示的力量,这些查询和深度学习问题无法轻易在常规的均匀图表中处理。作为概念的证明,我们介绍了新的社交媒体平台(Steemit)的详细表示,我们用它来说明动态查询功能以及使用图形神经网络(GNNS)的预测任务。结果说明了动态异质图表示对社交网络的模型的力量。鉴于这是一个相对研究的领域,我们还说明了在查询优化方面的未来工作以及异质图结构的新动态预测任务的机会。
translated by 谷歌翻译
本次调查绘制了用于分析社交媒体数据的生成方法的研究状态的广泛的全景照片(Sota)。它填补了空白,因为现有的调查文章在其范围内或被约会。我们包括两个重要方面,目前正在挖掘和建模社交媒体的重要性:动态和网络。社会动态对于了解影响影响或疾病的传播,友谊的形成,友谊的形成等,另一方面,可以捕获各种复杂关系,提供额外的洞察力和识别否则将不会被注意的重要模式。
translated by 谷歌翻译
大多数人类活动都需要在正式或非正式团队内部和跨部队进行合作。我们对团队所花费的合作努力与他们的表现有何关系的理解仍然是一个辩论问题。团队合作导致了一个高度相互联系的生态系统,这些生态系统可能是重叠的组件,其中与团队成员和其他团队进行互动执行任务。为了解决这个问题,我们提出了一个图形神经网络模型,旨在预测团队的性能,同时确定确定这种结果的驱动程序。特别是,该模型基于三个架构渠道:拓扑,中心性和上下文,它们捕获了不同因素可能塑造了团队的成功。我们赋予该模型具有两种注意机制,以提高模型性能并允许解释性。第一种机制允许查明团队内部的关键成员。第二种机制使我们能够量化三个驱动程序在确定结果绩效方面的贡献。我们在广泛的域上测试模型性能,其表现优于所考虑的大多数经典和神经基准。此外,我们包括专门设计的合成数据集,以验证该模型如何删除我们的模型胜过基线的预期属性。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
异质图卷积网络在解决异质网络数据的各种网络分析任务方面已广受欢迎,从链接预测到节点分类。但是,大多数现有作品都忽略了多型节点之间的多重网络的关系异质性,而在元路径中,元素嵌入中关系的重要性不同,这几乎无法捕获不同关系跨不同关系的异质结构信号。为了应对这一挑战,这项工作提出了用于异质网络嵌入的多重异质图卷积网络(MHGCN)。我们的MHGCN可以通过多层卷积聚合自动学习多重异质网络中不同长度的有用的异质元路径相互作用。此外,我们有效地将多相关结构信号和属性语义集成到学习的节点嵌入中,并具有无监督和精选的学习范式。在具有各种网络分析任务的五个现实世界数据集上进行的广泛实验表明,根据所有评估指标,MHGCN与最先进的嵌入基线的优势。
translated by 谷歌翻译
保持个人特征和复杂的关系,广泛利用和研究了图表数据。通过更新和聚合节点的表示,能够捕获结构信息,图形神经网络(GNN)模型正在获得普及。在财务背景下,该图是基于实际数据构建的,这导致复杂的图形结构,因此需要复杂的方法。在这项工作中,我们在最近的财务环境中对GNN模型进行了全面的审查。我们首先将普通使用的财务图分类并总结每个节点的功能处理步骤。然后,我们总结了每个地图类型的GNN方法,每个区域的应用,并提出一些潜在的研究领域。
translated by 谷歌翻译
在社交媒体上传播谣言对社会构成了重要威胁,因此最近提出了各种谣言检测技术。然而,现有的工作重点是\ emph {what}实体构成谣言,但几乎没有支持理解\ emph {为什么}实体已被归类为这样。这样可以防止对检测的谣言以及对策设计的有效评估。在这项工作中,我们认为,可以通过过去检测到的相关谣言的例子来给出检测到的谣言的解释。一系列类似的谣言有助于用户概括,即了解控制谣言的探测的特性。由于通常使用特征声明的图表对社交媒体的谣言传播通常是建模的,因此我们提出了一种逐个示例的方法,鉴于谣言图,它从过去的谣言中提取了$ k $最相似和最多的子图。挑战是所有计算都需要快速评估图之间的相似性。为了在流式设置中实现该方法的有效和适应性实现,我们提出了一种新颖的图表学习技术,并报告了实施注意事项。我们的评估实验表明,我们的方法在为各种谣言传播行为提供有意义的解释方面优于基线技术。
translated by 谷歌翻译
预期观众对某些文本的反应是社会的几个方面不可或缺的,包括政治,研究和商业行业。情感分析(SA)是一种有用的自然语言处理(NLP)技术,它利用词汇/统计和深度学习方法来确定不同尺寸的文本是否表现出正面,负面或中立的情绪。但是,目前缺乏工具来分析独立文本的组并从整体中提取主要情感。因此,当前的论文提出了一种新型算法,称为多层推文分析仪(MLTA),该算法使用多层网络(MLN)以图形方式对社交媒体文本进行了图形方式,以便更好地编码跨越独立的推文集的关系。与其他表示方法相比,图结构能够捕获复杂生态系统中有意义的关系。最先进的图形神经网络(GNN)用于从Tweet-MLN中提取信息,并根据提取的图形特征进行预测。结果表明,与标准的正面,负或中性相比,MLTA不仅可以从更大的可能情绪中预测,从而提供了更准确的情感,还允许对Twitter数据进行准确的组级预测。
translated by 谷歌翻译
时间图代表实体之间的动态关系,并发生在许多现实生活中的应用中,例如社交网络,电子商务,通信,道路网络,生物系统等。他们需要根据其生成建模和表示学习的研究超出与静态图有关的研究。在这项调查中,我们全面回顾了近期针对处理时间图提出的神经时间依赖图表的学习和生成建模方法。最后,我们确定了现有方法的弱点,并讨论了我们最近发表的论文提格的研究建议[24]。
translated by 谷歌翻译
检测假新闻对于确保信息的真实性和维持新闻生态系统的可靠性至关重要。最近,由于最近的社交媒体和伪造的内容生成技术(例如Deep Fake)的扩散,假新闻内容的增加了。假新闻检测的大多数现有方式都集中在基于内容的方法上。但是,这些技术中的大多数无法处理生成模型生产的超现实合成媒体。我们最近的研究发现,真实和虚假新闻的传播特征是可以区分的,无论其方式如何。在这方面,我们已经根据社会环境调查了辅助信息,以检测假新闻。本文通过基于混合图神经网络的方法分析了假新闻检测的社会背景。该混合模型基于将图形神经网络集成到新闻内容上的新闻和BI定向编码器表示的传播中,以了解文本功能。因此,这种提出的方​​法可以学习内容以及上下文特征,因此能够在Politifact上以F1分别为0.91和0.93的基线模型和八西八角数据集的基线模型,分别超过了基线模型,分别在八西八学数据集中胜过0.93
translated by 谷歌翻译
Graph learning is a popular approach for performing machine learning on graph-structured data. It has revolutionized the machine learning ability to model graph data to address downstream tasks. Its application is wide due to the availability of graph data ranging from all types of networks to information systems. Most graph learning methods assume that the graph is static and its complete structure is known during training. This limits their applicability since they cannot be applied to problems where the underlying graph grows over time and/or new tasks emerge incrementally. Such applications require a lifelong learning approach that can learn the graph continuously and accommodate new information whilst retaining previously learned knowledge. Lifelong learning methods that enable continuous learning in regular domains like images and text cannot be directly applied to continuously evolving graph data, due to its irregular structure. As a result, graph lifelong learning is gaining attention from the research community. This survey paper provides a comprehensive overview of recent advancements in graph lifelong learning, including the categorization of existing methods, and the discussions of potential applications and open research problems.
translated by 谷歌翻译
社交机器人被称为社交网络上的自动帐户,这些帐户试图像人类一样行事。尽管图形神经网络(GNNS)已大量应用于社会机器人检测领域,但大量的领域专业知识和先验知识大量参与了最先进的方法,以设计专门的神经网络体系结构,以设计特定的神经网络体系结构。分类任务。但是,在模型设计中涉及超大的节点和网络层,通常会导致过度平滑的问题和缺乏嵌入歧视。在本文中,我们提出了罗斯加斯(Rosgas),这是一种新颖的加强和自我监督的GNN Architecture搜索框架,以适应性地指出了最合适的多跳跃社区和GNN体系结构中的层数。更具体地说,我们将社交机器人检测问题视为以用户为中心的子图嵌入和分类任务。我们利用异构信息网络来通过利用帐户元数据,关系,行为特征和内容功能来展示用户连接。 Rosgas使用多代理的深钢筋学习(RL)机制来导航最佳邻域和网络层的搜索,以分别学习每个目标用户的子图嵌入。开发了一种用于加速RL训练过程的最接近的邻居机制,Rosgas可以借助自我监督的学习来学习更多的判别子图。 5个Twitter数据集的实验表明,Rosgas在准确性,训练效率和稳定性方面优于最先进的方法,并且在处理看不见的样本时具有更好的概括。
translated by 谷歌翻译
Recent years have witnessed the emerging success of graph neural networks (GNNs) for modeling structured data. However, most GNNs are designed for homogeneous graphs, in which all nodes and edges belong to the same types, making them infeasible to represent heterogeneous structures. In this paper, we present the Heterogeneous Graph Transformer (HGT) architecture for modeling Web-scale heterogeneous graphs. To model heterogeneity, we design node-and edge-type dependent parameters to characterize the heterogeneous attention over each edge, empowering HGT to maintain dedicated representations for different types of nodes and edges. To handle dynamic heterogeneous graphs, we introduce the relative temporal encoding technique into HGT, which is able to capture the dynamic structural dependency with arbitrary durations. To handle Web-scale graph data, we design the heterogeneous mini-batch graph sampling algorithm-HGSampling-for efficient and scalable training. Extensive experiments on the Open Academic Graph of 179 million nodes and 2 billion edges show that the proposed HGT model consistently outperforms all the state-of-the-art GNN baselines by 9%-21% on various downstream tasks. The dataset and source code of HGT are publicly available at https://github.com/acbull/pyHGT.
translated by 谷歌翻译
Twitter机器人检测已成为打击错误信息,促进社交媒体节制并保持在线话语的完整性的越来越重要的任务。最先进的机器人检测方法通常利用Twitter网络的图形结构,在面对传统方法无法检测到的新型Twitter机器人时,它们表现出令人鼓舞的性能。但是,现有的Twitter机器人检测数据集很少是基于图形的,即使这些基于图形的数据集也遭受有限的数据集量表,不完整的图形结构以及低注释质量。实际上,缺乏解决这些问题的大规模基于图的Twitter机器人检测基准,严重阻碍了基于图形的机器人检测方法的开发和评估。在本文中,我们提出了Twibot-22,这是一个综合基于图的Twitter机器人检测基准,它显示了迄今为止最大的数据集,在Twitter网络上提供了多元化的实体和关系,并且与现有数据集相比具有更好的注释质量。此外,我们重新实施35代表性的Twitter机器人检测基线,并在包括Twibot-22在内的9个数据集上进行评估,以促进对模型性能和对研究进度的整体了解的公平比较。为了促进进一步的研究,我们将所有实施的代码和数据集巩固到Twibot-22评估框架中,研究人员可以在其中始终如一地评估新的模型和数据集。 Twibot-22 Twitter机器人检测基准和评估框架可在https://twibot22.github.io/上公开获得。
translated by 谷歌翻译
Graph is an important data representation which appears in a wide diversity of real-world scenarios. Effective graph analytics provides users a deeper understanding of what is behind the data, and thus can benefit a lot of useful applications such as node classification, node recommendation, link prediction, etc. However, most graph analytics methods suffer the high computation and space cost. Graph embedding is an effective yet efficient way to solve the graph analytics problem. It converts the graph data into a low dimensional space in which the graph structural information and graph properties are maximumly preserved. In this survey, we conduct a comprehensive review of the literature in graph embedding. We first introduce the formal definition of graph embedding as well as the related concepts. After that, we propose two taxonomies of graph embedding which correspond to what challenges exist in different graph embedding problem settings and how the existing work address these challenges in their solutions. Finally, we summarize the applications that graph embedding enables and suggest four promising future research directions in terms of computation efficiency, problem settings, techniques and application scenarios.
translated by 谷歌翻译
为了解决疫苗犹豫不决,这会损害COVID-19疫苗接种运动的努力,必须了解公共疫苗接种态度并及时掌握其变化。尽管具有可靠性和可信赖性,但基于调查的传统态度收集是耗时且昂贵的,无法遵循疫苗接种态度的快速发展。我们利用社交媒体上的文本帖子通过提出深入学习框架来实时提取和跟踪用户的疫苗接种立场。为了解决与疫苗相关话语中常用的讽刺和讽刺性的语言特征的影响,我们将用户社交网络邻居的最新帖子集成到框架中,以帮助检测用户的真实态度。根据我们从Twitter的注释数据集,与最新的仅文本模型相比,从我们框架实例化的模型可以提高态度提取的性能高达23%。使用此框架,我们成功地验证了使用社交媒体跟踪现实生活中疫苗接种态度的演变的可行性。我们进一步显示了对我们的框架的一种实际用途,它可以通过从社交媒体中感知到的信息来预测用户疫苗犹豫的变化的可能性。
translated by 谷歌翻译
尽管与以太坊这样的加密货币交易变得越来越普遍,但欺诈和其他犯罪交易并不少见。图分析算法和机器学习技术检测到导致大型交易网络网络钓鱼的可疑交易。已经提出了许多图形神经网络(GNN)模型将深度学习技术应用于图形结构。尽管在以太坊交易网络中使用GNN模型进行了网络钓鱼检测的研究,但尚未研究针对顶点和边缘数量的规模以及标签不平衡的模型。在本文中,我们比较了GNN模型在实际以太坊交易网络数据集和网络钓鱼报告的标签数据上的模型性能,以详尽地比较和验证哪些GNN模型和超参数产生最佳精度。具体而言,我们评估了代表性同质GNN模型的模型性能,该模型考虑了单型节点和边缘以及支持不同类型的节点和边缘的异质GNN模型。我们表明,异质模型比同质模型具有更好的模型性能。特别是,RGCN模型在整体指标中取得了最佳性能。
translated by 谷歌翻译
TensorFlow GNN(TF-GNN)是张量曲线的图形神经网络的可扩展库。它是从自下而上设计的,以支持当今信息生态系统中发生的丰富的异质图数据。Google的许多生产模型都使用TF-GNN,最近已作为开源项目发布。在本文中,我们描述了TF-GNN数据模型,其KERAS建模API以及相关功能,例如图形采样,分布式训练和加速器支持。
translated by 谷歌翻译
人口级社会事件,如民事骚乱和犯罪,往往对我们的日常生活产生重大影响。预测此类事件对于决策和资源分配非常重要。由于缺乏关于事件发生的真实原因和潜在机制的知识,事件预测传统上具有挑战性。近年来,由于两个主要原因,研究事件预测研究取得了重大进展:(1)机器学习和深度学习算法的开发和(2)社交媒体,新闻来源,博客,经济等公共数据的可访问性指标和其他元数据源。软件/硬件技术中的数据的爆炸性增长导致了社会事件研究中的深度学习技巧的应用。本文致力于提供社会事件预测的深层学习技术的系统和全面概述。我们专注于两个社会事件的域名:\ Texit {Civil unrest}和\ texit {犯罪}。我们首先介绍事件预测问题如何作为机器学习预测任务制定。然后,我们总结了这些问题的数据资源,传统方法和最近的深度学习模型的发展。最后,我们讨论了社会事件预测中的挑战,并提出了一些有希望的未来研究方向。
translated by 谷歌翻译
多药物(定义为使用多种药物)是一种标准治疗方法,尤其是对于严重和慢性疾病。但是,将多种药物一起使用可能会导致药物之间的相互作用。药物 - 药物相互作用(DDI)是一种与另一种药物结合时的影响发生变化时发生的活性。 DDI可能会阻塞,增加或减少药物的预期作用,或者在最坏情况下,会产生不利的副作用。虽然准时检测DDI至关重要,但由于持续时间短,并且在临床试验中识别它们是时间的,而且昂贵,并且要考虑许多可能的药物对进行测试。结果,需要计算方法来预测DDI。在本文中,我们提出了一种新型的异质图注意模型Han-DDI,以预测药物 - 药物相互作用。我们建立了具有不同生物实体的药物网络。然后,我们开发了一个异质的图形注意网络,以使用药物与其他实体的关系学习DDI。它由一个基于注意力的异质图节点编码器组成,用于获得药物节点表示和用于预测药物相互作用的解码器。此外,我们利用全面的实验来评估我们的模型并将其与最先进的模型进行比较。实验结果表明,我们提出的方法Han-DDI的表现可以显着,准确地预测DDI,即使对于新药也是如此。
translated by 谷歌翻译