由于其简单性和最先进的性能,神经辐射场(NERF)被出现为新型视图综合任务的强大表示。虽然NERF可以在许多输入视图可用时产生看不见的观点的光静观渲染,但是当该数量减少时,其性能显着下降。我们观察到,稀疏输入方案中的大多数伪像是由估计场景几何中的错误引起的,并且在训练开始时通过不同的行为引起。我们通过规范从未观察的视点呈现的修补程序的几何和外观来解决这一点,并在训练期间退火光线采样空间。我们还使用规范化的流模型来规范未观察的视点的颜色。我们的车型不仅优于优化单个场景的其他方法,而是在许多情况下,还有条件模型,这些模型在大型多视图数据集上广泛预先培训。
translated by 谷歌翻译
神经辐射字段(NERF)将场景编码为神经表示,使得能够实现新颖视图的照片逼真。然而,RGB图像的成功重建需要在静态条件下拍摄的大量输入视图 - 通常可以为房间尺寸场景的几百个图像。我们的方法旨在将整个房间的小说视图从数量级的图像中合成。为此,我们利用密集的深度前导者来限制NERF优化。首先,我们利用从用于估计相机姿势的运动(SFM)预处理步骤的结构自由提供的稀疏深度数据。其次,我们使用深度完成将这些稀疏点转换为密集的深度图和不确定性估计,用于指导NERF优化。我们的方法使数据有效的新颖观看综合在挑战室内场景中,使用少量为整个场景的18张图像。
translated by 谷歌翻译
我们提出了一种基于神经隐式表示的少量新型视图综合信息 - 理论正规化技术。所提出的方法最小化由于在每个光线中强制密度的熵约束而发生的潜在的重建不一致。另外,当从几乎冗余的观点获取所有训练图像时,为了减轻潜在的退化问题,我们还通过限制来自一对略微不同观点的光线的信息增益来将空间平滑度约束纳入估计的图像。我们的算法的主要思想是使重建的场景沿各个光线紧凑,并在附近的光线上一致。所提出的常规方基于Nerf以直接的方式插入大部分现有的神经体积渲染技术。尽管其简单性,但是,与现有的神经观察合成方法通过大量标准基准测试的现有神经观察方法相比,我们实现了一致的性能。我们的项目网站可用于\ url {http://cvlab.snu.ac.kr/research/infonerf}。
translated by 谷歌翻译
神经辐射场(或NERF)代表了新的视图合成领域的突破和从多视图图像集合中对复杂场景进行的3D建模。最近的许多作品一直集中在通过正则化来使模型更加健壮,以便能够使用可能不一致和/或非常稀疏的数据进行训练。在这项工作中,我们刮擦了差异几何形状如何为稳健训练NERF样模型提供正则化工具的表面,这些工具经过修改,以表示连续和无限可区分的函数。特别是,我们展示了这些工具如何产生先前提出的NERF变体的直接数学形式主义,旨在改善具有挑战性的条件(即regnerf)。基于这一点,我们展示了如何使用相同的形式主义来培养表面的规律性(通过高斯和平均曲率),使得例如从非常有限的观点中学习表面。
translated by 谷歌翻译
We present a method that synthesizes novel views of complex scenes by interpolating a sparse set of nearby views. The core of our method is a network architecture that includes a multilayer perceptron and a ray transformer that estimates radiance and volume density at continuous 5D locations (3D spatial locations and 2D viewing directions), drawing appearance information on the fly from multiple source views. By drawing on source views at render time, our method hearkens back to classic work on image-based rendering (IBR), and allows us to render high-resolution imagery. Unlike neural scene representation work that optimizes per-scene functions for rendering, we learn a generic view interpolation function that generalizes to novel scenes. We render images using classic volume rendering, which is fully differentiable and allows us to train using only multiview posed images as supervision. Experiments show that our method outperforms recent novel view synthesis methods that also seek to generalize to novel scenes. Further, if fine-tuned on each scene, our method is competitive with state-of-the-art single-scene neural rendering methods. 1
translated by 谷歌翻译
神经辐射场(NERF)具有密集捕获的输入图像实现光真实的视图合成。然而,鉴于稀疏的视图,NERF的几何形状极为严重,从而导致新观点合成质量的显着降解。受到自我监督的深度估计方法的启发,我们提出了structnerf,这是针对稀疏输入的室内场景的新型视图合成的解决方案。 structnerf利用自然嵌入多视图输入中的结构提示来处理NERF中无约束的几何问题。具体而言,它分别解决了纹理和非纹理区域:提出了基于贴片的多视图一致的光度损失来限制纹理区域的几何形状;对于非纹理的,我们明确地将它们限制为3D一致的平面。通过密集的自我监督深度约束,我们的方法可以改善NERF的几何形状和视图综合性能,而无需对外部数据进行任何其他培训。在几个现实世界数据集上进行的广泛实验表明,构造者超过了针对室内场景的最新方法,这些方法具有稀疏输入的定量和定性。
translated by 谷歌翻译
Figure 1: Our method can synthesize novel views in both space and time from a single monocular video of a dynamic scene. Here we show video results with various configurations of fixing and interpolating view and time (left), as well as a visualization of the recovered scene geometry (right). Please view with Adobe Acrobat or KDE Okular to see animations.
translated by 谷歌翻译
尽管神经辐射场(NERF)迅速发展,但稠密的必要性在很大程度上禁止其更广泛的应用。尽管最近的一些作品试图解决这个问题,但它们要么以稀疏的视图(仍然是其中的一些)操作,要么在简单的对象/场景上运行。在这项工作中,我们考虑了一项更雄心勃勃的任务:通过“只看一次”,即仅使用单个视图来训练神经辐射场,而是在现实的复杂视觉场景上。为了实现这一目标,我们提出了一个视图NERF(SINNERF)框架,该框架由精心设计的语义和几何正规化组成。具体而言,Sinnerf构建了一个半监督的学习过程,我们在其中介绍并传播几何标签和语义伪标签,以指导渐进式训练过程。广泛的实验是在复杂的场景基准上进行的,包括NERF合成数据集,本地光场融合数据集和DTU数据集。我们表明,即使在多视图数据集上进行预训练,Sinnerf也可以产生照片现实的新型视图合成结果。在单个图像设置下,Sinnerf在所有情况下都显着胜过当前最新的NERF基线。项目页面:https://vita-group.github.io/sinnerf/
translated by 谷歌翻译
新型视图综合的古典光场渲染可以准确地再现视图依赖性效果,例如反射,折射和半透明,但需要一个致密的视图采样的场景。基于几何重建的方法只需要稀疏的视图,但不能准确地模拟非兰伯语的效果。我们介绍了一个模型,它结合了强度并减轻了这两个方向的局限性。通过在光场的四维表示上操作,我们的模型学会准确表示依赖视图效果。通过在训练和推理期间强制执行几何约束,从稀疏的视图集中毫无屏蔽地学习场景几何。具体地,我们介绍了一种基于两级变压器的模型,首先沿着ePipoll线汇总特征,然后沿参考视图聚合特征以产生目标射线的颜色。我们的模型在多个前进和360 {\ DEG}数据集中优于最先进的,具有较大的差别依赖变化的场景更大的边缘。
translated by 谷歌翻译
我们呈现NERF-SR,一种用于高分辨率(HR)新型视图合成的解决方案,主要是低分辨率(LR)输入。我们的方法是基于神经辐射场(NERF)的内置,其预测每点密度和颜色,具有多层的射击。在在任意尺度上产生图像时,NERF与超越观察图像的分辨率努力。我们的关键识别是NERF具有本地之前的,这意味着可以在附近区域传播3D点的预测,并且保持准确。我们首先通过超级采样策略来利用它,该策略在每个图像像素处射击多个光线,这在子像素级别强制了多视图约束。然后,我们表明,NERF-SR可以通过改进网络进一步提高超级采样的性能,该细化网络利用估计的深度来实现HR参考图像上的相关补丁的幻觉。实验结果表明,NERF-SR在合成和现实世界数据集的HR上为新型视图合成产生高质量结果。
translated by 谷歌翻译
我们提出了一种基于神经辐射场(NERF)的单个$ 360^\ PANORAMA图像合成新视图的方法。在类似环境中的先前研究依赖于多层感知的邻居插值能力来完成由遮挡引起的丢失区域,这导致其预测中的伪像。我们提出了360Fusionnerf,这是一个半监督的学习框架,我们介绍几何监督和语义一致性,以指导渐进式培训过程。首先,将输入图像重新投影至$ 360^\ Circ $图像,并在其他相机位置提取辅助深度图。除NERF颜色指导外,深度监督还改善了合成视图的几何形状。此外,我们引入了语义一致性损失,鼓励新观点的现实渲染。我们使用预先训练的视觉编码器(例如剪辑)提取这些语义功能,这是一个视觉变压器,经过数以千计的不同2D照片,并通过自然语言监督从网络中挖掘出来。实验表明,我们提出的方法可以在保留场景的特征的同时产生未观察到的区域的合理完成。 360fusionnerf在各种场景中接受培训时,转移到合成结构3D数据集(PSNR〜5%,SSIM〜3%lpips〜13%)时,始终达到最先进的性能,SSIM〜3%LPIPS〜9%)和replica360数据集(PSNR〜8%,SSIM〜2%LPIPS〜18%)。
translated by 谷歌翻译
我们呈现高动态范围神经辐射字段(HDR-NERF),以从一组低动态范围(LDR)视图的HDR辐射率字段与不同的曝光。使用HDR-NERF,我们能够在不同的曝光下生成新的HDR视图和新型LDR视图。我们方法的关键是模拟物理成像过程,该过程决定了场景点的辐射与具有两个隐式功能的LDR图像中的像素值转换为:RADIACE字段和音调映射器。辐射场对场景辐射(值在0到+末端之间的值变化),其通过提供相应的射线源和光线方向来输出光线的密度和辐射。 TONE MAPPER模拟映射过程,即在相机传感器上击中的光线变为像素值。通过将辐射和相应的曝光时间送入音调映射器来预测光线的颜色。我们使用经典的卷渲染技术将输出辐射,颜色和密度投影为HDR和LDR图像,同时只使用输入的LDR图像作为监控。我们收集了一个新的前瞻性的HDR数据集,以评估所提出的方法。综合性和现实世界场景的实验结果验证了我们的方法不仅可以准确控制合成视图的曝光,还可以用高动态范围呈现视图。
translated by 谷歌翻译
计算机愿景中的经典问题是推断从几个可用于以交互式速率渲染新颖视图的图像的3D场景表示。以前的工作侧重于重建预定定义的3D表示,例如,纹理网格或隐式表示,例如隐式表示。辐射字段,并且通常需要输入图像,具有精确的相机姿势和每个新颖场景的长处理时间。在这项工作中,我们提出了场景表示变换器(SRT),一种方法,该方法处理新的区域的构成或未铺设的RGB图像,Infers Infers“设置 - 潜在场景表示”,并合成新颖的视图,全部在一个前馈中经过。为了计算场景表示,我们提出了视觉变压器的概括到图像组,实现全局信息集成,从而实现3D推理。一个有效的解码器变压器通过参加场景表示来参加光场以呈现新颖的视图。通过最大限度地减少新型视图重建错误,学习是通过最终到底的。我们表明,此方法在PSNR和Synthetic DataSets上的速度方面优于最近的基线,包括为纸张创建的新数据集。此外,我们展示了使用街景图像支持现实世界户外环境的交互式可视化和语义分割。
translated by 谷歌翻译
在本文中,我们为复杂场景进行了高效且强大的深度学习解决方案。在我们的方法中,3D场景表示为光场,即,一组光线,每组在到达图像平面时具有相应的颜色。对于高效的新颖视图渲染,我们采用了光场的双面参数化,其中每个光线的特征在于4D参数。然后,我们将光场配向作为4D函数,即将4D坐标映射到相应的颜色值。我们训练一个深度完全连接的网络以优化这种隐式功能并记住3D场景。然后,特定于场景的模型用于综合新颖视图。与以前需要密集的视野的方法不同,需要密集的视野采样来可靠地呈现新颖的视图,我们的方法可以通过采样光线来呈现新颖的视图并直接从网络查询每种光线的颜色,从而使高质量的灯场呈现稀疏集合训练图像。网络可以可选地预测每光深度,从而使诸如自动重新焦点的应用。我们的小说视图合成结果与最先进的综合结果相当,甚至在一些具有折射和反射的具有挑战性的场景中优越。我们在保持交互式帧速率和小的内存占地面积的同时实现这一点。
translated by 谷歌翻译
本文提出了一个逐步连接的光场网络(Prolif),以构成复杂的前向场景的新观点。扩散编码一个4D光场,该场允许在一个训练步骤中渲染大量射线,以实现图像或贴片级损失。直接从图像中学习神经光场很难呈现多视图一致的图像,因为它对基础3D几何形状的不了解。为了解决这个问题,我们提出了一种渐进培训计划和正则化损失,以推断训练过程中的基础几何形状,这两者都会实现多视图一致性,从而极大地提高了渲染质量。实验表明,与香草神经光场相比,我们的方法能够实现明显更好的渲染质量,并且与挑战性的LLFF数据集和闪亮对象数据集的类似NERF的渲染方法相当。此外,我们证明了与LPIP的损失更好的兼容性,以实现与不同的光条件和剪辑损失的稳健性,以控制场景的渲染方式。项目页面:https://totoro97.github.io/projects/prolif。
translated by 谷歌翻译
这项工作的目标是通过扫描平台捕获的数据进行3D重建和新颖的观看综合,该平台在城市室外环境中常设世界映射(例如,街景)。给定一系列由摄像机和扫描仪通过室外场景的摄像机和扫描仪进行的序列,我们产生可以从中提取3D表面的模型,并且可以合成新颖的RGB图像。我们的方法扩展了神经辐射字段,已经证明了用于在受控设置中的小型场景中的逼真新颖的图像,用于利用异步捕获的LIDAR数据,用于寻址捕获图像之间的曝光变化,以及利用预测的图像分段来监督密度。在光线指向天空。这三个扩展中的每一个都在街道视图数据上的实验中提供了显着的性能改进。我们的系统产生最先进的3D表面重建,并与传统方法(例如〜Colmap)和最近的神经表示(例如〜MIP-NERF)相比,合成更高质量的新颖视图。
translated by 谷歌翻译
我们提出了HRF-NET,这是一种基于整体辐射场的新型视图合成方法,该方法使用一组稀疏输入来呈现新视图。最近的概括视图合成方法还利用了光辉场,但渲染速度不是实时的。现有的方法可以有效地训练和呈现新颖的观点,但它们无法概括地看不到场景。我们的方法解决了用于概括视图合成的实时渲染问题,并由两个主要阶段组成:整体辐射场预测指标和基于卷积的神经渲染器。该架构不仅基于隐式神经场的一致场景几何形状,而且还可以使用单个GPU有效地呈现新视图。我们首先在DTU数据集的多个3D场景上训练HRF-NET,并且网络只能仅使用光度损耗就看不见的真实和合成数据产生合理的新视图。此外,我们的方法可以利用单个场景的密集参考图像集来产生准确的新颖视图,而无需依赖其他明确表示,并且仍然保持了预训练模型的高速渲染。实验结果表明,HRF-NET优于各种合成和真实数据集的最先进的神经渲染方法。
translated by 谷歌翻译
We present a learning-based method for synthesizing novel views of complex scenes using only unstructured collections of in-the-wild photographs. We build on Neural Radiance Fields (NeRF), which uses the weights of a multilayer perceptron to model the density and color of a scene as a function of 3D coordinates. While NeRF works well on images of static subjects captured under controlled settings, it is incapable of modeling many ubiquitous, real-world phenomena in uncontrolled images, such as variable illumination or transient occluders. We introduce a series of extensions to NeRF to address these issues, thereby enabling accurate reconstructions from unstructured image collections taken from the internet. We apply our system, dubbed NeRF-W, to internet photo collections of famous landmarks, and demonstrate temporally consistent novel view renderings that are significantly closer to photorealism than the prior state of the art.
translated by 谷歌翻译
自从神经辐射场(NERF)出现以来,神经渲染引起了极大的关注,并且已经大大推动了新型视图合成的最新作品。最近的重点是在模型上过度适合单个场景,以及学习模型的一些尝试,这些模型可以综合看不见的场景的新型视图,主要包括将深度卷积特征与类似NERF的模型组合在一起。我们提出了一个不同的范式,不需要深层特征,也不需要类似NERF的体积渲染。我们的方法能够直接从现场采样的贴片集中直接预测目标射线的颜色。我们首先利用表现几何形状沿着每个参考视图的异性线提取斑块。每个贴片线性地投影到1D特征向量和一系列变压器处理集合中。对于位置编码,我们像在光场表示中一样对射线进行参数化,并且至关重要的差异是坐标是相对于目标射线的规范化的,这使我们的方法与参考帧无关并改善了概括。我们表明,即使接受比先前的工作要少得多的数据训练,我们的方法在新颖的综合综合方面都超出了最新的视图综合。
translated by 谷歌翻译
Photo-realistic free-viewpoint rendering of real-world scenes using classical computer graphics techniques is challenging, because it requires the difficult step of capturing detailed appearance and geometry models. Recent studies have demonstrated promising results by learning scene representations that implicitly encode both geometry and appearance without 3D supervision. However, existing approaches in practice often show blurry renderings caused by the limited network capacity or the difficulty in finding accurate intersections of camera rays with the scene geometry. Synthesizing high-resolution imagery from these representations often requires time-consuming optical ray marching. In this work, we introduce Neural Sparse Voxel Fields (NSVF), a new neural scene representation for fast and high-quality free-viewpoint rendering. NSVF defines a set of voxel-bounded implicit fields organized in a sparse voxel octree to model local properties in each cell. We progressively learn the underlying voxel structures with a diffentiable ray-marching operation from only a set of posed RGB images. With the sparse voxel octree structure, rendering novel views can be accelerated by skipping the voxels containing no relevant scene content. Our method is typically over 10 times faster than the state-of-the-art (namely, NeRF (Mildenhall et al., 2020)) at inference time while achieving higher quality results. Furthermore, by utilizing an explicit sparse voxel representation, our method can easily be applied to scene editing and scene composition. We also demonstrate several challenging tasks, including multi-scene learning, free-viewpoint rendering of a moving human, and large-scale scene rendering. Code and data are available at our website: https://github.com/facebookresearch/NSVF.
translated by 谷歌翻译