非正交多访问(NOMA)是一项有趣的技术,可以根据未来的5G和6G网络的要求实现大规模连通性。尽管纯线性处理已经在NOMA系统中达到了良好的性能,但在某些情况下,非线性处理是必须的,以确保可接受的性能。在本文中,我们提出了一个神经网络体系结构,该架构结合了线性和非线性处理的优势。在图形处理单元(GPU)上的高效实现证明了其实时检测性能。使用实验室环境中的实际测量值,我们显示了方法比常规方法的优越性。
translated by 谷歌翻译
基于von-neumann架构的传统计算系统,数据密集型工作负载和应用程序(如机器学习)和应用程序都是基本上限制的。随着数据移动操作和能量消耗成为计算系统设计中的关键瓶颈,对近数据处理(NDP),机器学习和特别是神经网络(NN)的加速器等非传统方法的兴趣显着增加。诸如Reram和3D堆叠的新兴内存技术,这是有效地架构基于NN的基于NN的加速器,因为它们的工作能力是:高密度/低能量存储和近记忆计算/搜索引擎。在本文中,我们提出了一种为NN设计NDP架构的技术调查。通过基于所采用的内存技术对技术进行分类,我们强调了它们的相似之处和差异。最后,我们讨论了需要探索的开放挑战和未来的观点,以便改进和扩展未来计算平台的NDP架构。本文对计算机学习领域的计算机架构师,芯片设计师和研究人员来说是有价值的。
translated by 谷歌翻译
原则上,稀疏的神经网络应该比传统的密集网络更有效。大脑中的神经元表现出两种类型的稀疏性;它们稀疏地相互连接和稀疏活跃。当组合时,这两种类型的稀疏性,称为重量稀疏性和激活稀疏性,提出了通过两个数量级来降低神经网络的计算成本。尽管存在这种潜力,但今天的神经网络只使用重量稀疏提供适度的性能益处,因为传统的计算硬件无法有效地处理稀疏网络。在本文中,我们引入了互补稀疏性,这是一种显着提高现有硬件对双稀疏网络性能的新技术。我们证明我们可以实现高性能运行的重量稀疏网络,我们可以通过结合激活稀疏性来乘以这些加速。采用互补稀疏性,我们显示出对FPGA的推断的吞吐量和能效提高了100倍。我们分析了典型的商业卷积网络等各种内核的可扩展性和资源权衡,例如Resnet-50和MobileNetv2。我们的互补稀疏性的结果表明,重量加激活稀疏性可以是有效的缩放未来AI模型的有效组合。
translated by 谷歌翻译
最新的努力改善了满足当今应用程序要求的神经网络(NN)加速器的性能,这引起了基于逻辑NN推理的新趋势,该趋势依赖于固定功能组合逻辑。将如此大的布尔函数与许多输入变量和产品项绘制到现场可编程门阵列(FPGA)上的数字信号处理器(DSP)需要一个新颖的框架,考虑到此过程中DSP块的结构和可重构性。本文中提出的方法将固定功能组合逻辑块映射到一组布尔功能,其中与每个功能相对应的布尔操作映射到DSP设备,而不是FPGA上的查找表(LUTS),以利用高性能,DSP块的低潜伏期和并行性。 %本文还提出了一种用于NNS编译和映射的创新设计和优化方法,并利用固定功能组合逻辑与DSP进行了使用高级合成流的FPGA上的DSP。 %我们在几个\ revone {DataSets}上进行的实验评估和选定的NNS与使用DSP的基于ART FPGA的NN加速器相比,根据推理潜伏期和输出准确性,证明了我们框架的可比性。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
对将AI功能从云上的数据中心转移到边缘或最终设备的需求越来越大,这是由在智能手机,AR/VR设备,自动驾驶汽车和各种汽车上运行的快速实时AI的应用程序举例说明的。物联网设备。然而,由于DNN计算需求与边缘或最终设备上的计算能力之间的较大增长差距,这种转变受到了严重的阻碍。本文介绍了XGEN的设计,这是DNN的优化框架,旨在弥合差距。 XGEN将横切共同设计作为其一阶考虑。它的全栈AI面向AI的优化包括在DNN软件堆栈的各个层的许多创新优化,所有这些优化都以合作的方式设计。独特的技术使XGEN能够优化各种DNN,包括具有极高深度的DNN(例如Bert,GPT,其他变形金刚),并生成代码比现有DNN框架中的代码快几倍,同时提供相同的准确性水平。
translated by 谷歌翻译
在过去十年中,已经开发出新的深度学习(DL)算法,工作负载和硬件来解决各种问题。尽管工作量和硬件生态系统的进步,DL系统的编程方法是停滞不前的。 DL工作负载从DL库中的高度优化,特定于平台和不灵活的内核,或者在新颖的操作员的情况下,通过具有强大性能的DL框架基元建立参考实现。这项工作介绍了Tensor加工基元(TPP),一个编程抽象,用于高效的DL工作负载的高效,便携式实现。 TPPS定义了一组紧凑而多才多艺的2D张镜操作员(或虚拟张量ISA),随后可以用作构建块,以在高维张量上构建复杂的运算符。 TPP规范是平台 - 不可行的,因此通过TPPS表示的代码是便携式的,而TPP实现是高度优化的,并且特定于平台。我们展示了我们使用独立内核和端到端DL&HPC工作负载完全通过TPPS表达的方法的效力和生存性,这在多个平台上优于最先进的实现。
translated by 谷歌翻译
一般矩阵乘法或GEMM内核在高性能计算和机器学习中占据中心位置。最近的NVIDIA GPU包括Gemm加速器,如Nvidia的张量核心。他们的剥削受到双语言问题的阻碍:它需要低级编程,这意味着低程序员的工作效率或使用只提供有限组件集的库。由于建立的组件方面的REPRASING算法经常引入开销,因此图书馆缺乏灵活性限制了探索新算法的自由。因此,使用GEMMS的研究人员无法立即享受编程生产力,高性能和研究灵活性。在本文中,我们解决了这个问题。我们在科学朱莉娅编程语言中展示了三组抽象和接口来编程宝石。界面和抽象共同设计用于研究人员的需求和朱莉娅的特征,以实现足够的担忧和灵活性的充分分离,以便在不支付性能价格的情况下轻松地扩展基本宝石。将我们的Gemms与最先进的图书馆Cublas和Cutlass进行比较,我们证明我们的性能在图书馆的相同球场中,并且在某些情况下甚至超过它,而无需在CUDA C ++中编写单行代码或者组装,而不面临灵活限制。
translated by 谷歌翻译
我们在并行计算机架构上的图像的自适应粒子表示(APR)上的离散卷积运算符的本机实现数据结构和算法。 APR是一个内容 - 自适应图像表示,其本地地将采样分辨率局部调整到图像信号。已经开发为大,稀疏图像的像素表示的替代方案,因为它们通常在荧光显微镜中发生。已经显示出降低存储,可视化和处理此类图像的存储器和运行时成本。然而,这要求图像处理本身在APRS上运行,而无需中间恢复为像素。然而,设计高效和可扩展的APR-Native图像处理原语是APR的不规则内存结构的复杂性。这里,我们提供了使用可以在离散卷积方面配制的各种算法有效和本地地处理APR图像所需的算法建筑块。我们表明APR卷积自然地导致缩放 - 自适应算法,可在多核CPU和GPU架构上有效地平行化。与基于像素的算法和概念性数据的卷积相比,我们量化了加速度。我们在单个NVIDIA GeForce RTX 2080 Gaming GPU上实现了最多1 TB / s的像素等效吞吐量,而不是基于像素的实现的存储器最多两个数量级。
translated by 谷歌翻译
在小型电池约束的物流设备上部署现代TinyML任务需要高计算能效。使用非易失性存储器(NVM)的模拟内存计算(IMC)承诺在深神经网络(DNN)推理中的主要效率提高,并用作DNN权重的片上存储器存储器。然而,在系统级别尚未完全理解IMC的功能灵活性限制及其对性能,能量和面积效率的影响。为了目标实际的端到端的IOT应用程序,IMC阵列必须括在异构可编程系统中,引入我们旨在解决这项工作的新系统级挑战。我们介绍了一个非均相紧密的聚类架构,整合了8个RISC-V核心,内存计算加速器(IMA)和数字加速器。我们在高度异构的工作负载上基准测试,例如来自MobileNetv2的瓶颈层,显示出11.5倍的性能和9.5倍的能效改进,而在核心上高度优化并行执行相比。此外,我们通过将我们的异构架构缩放到多阵列加速器,探讨了在IMC阵列资源方面对全移动级DNN(MobileNetv2)的端到端推断的要求。我们的结果表明,我们的解决方案在MobileNetv2的端到端推断上,在执行延迟方面比现有的可编程架构更好,比最先进的异构解决方案更好的数量级集成内存计算模拟核心。
translated by 谷歌翻译
低成本毫米波(MMWAVE)通信和雷达设备的商业可用性开始提高消费市场中这种技术的渗透,为第五代(5G)的大规模和致密的部署铺平了道路(5G) - 而且以及6G网络。同时,普遍存在MMWAVE访问将使设备定位和无设备的感测,以前所未有的精度,特别是对于Sub-6 GHz商业级设备。本文使用MMWAVE通信和雷达设备在基于设备的定位和无设备感应中进行了现有技术的调查,重点是室内部署。我们首先概述关于MMWAVE信号传播和系统设计的关键概念。然后,我们提供了MMWaves启用的本地化和感应方法和算法的详细说明。我们考虑了在我们的分析中的几个方面,包括每个工作的主要目标,技术和性能,每个研究是否达到了一定程度的实现,并且该硬件平台用于此目的。我们通过讨论消费者级设备的更好算法,密集部署的数据融合方法以及机器学习方法的受过教育应用是有前途,相关和及时的研究方向的结论。
translated by 谷歌翻译
我们日常生活中的深度学习是普遍存在的,包括自驾车,虚拟助理,社交网络服务,医疗服务,面部识别等,但是深度神经网络在训练和推理期间需要大量计算资源。该机器学习界主要集中在模型级优化(如深度学习模型的架构压缩),而系统社区则专注于实施级别优化。在其间,在算术界中提出了各种算术级优化技术。本文在模型,算术和实施级技术方面提供了关于资源有效的深度学习技术的调查,并确定了三种不同级别技术的资源有效的深度学习技术的研究差距。我们的调查基于我们的资源效率度量定义,阐明了较低级别技术的影响,并探讨了资源有效的深度学习研究的未来趋势。
translated by 谷歌翻译
第五代(5G)网络和超越设想巨大的东西互联网(物联网)推出,以支持延长现实(XR),增强/虚拟现实(AR / VR),工业自动化,自主驾驶和智能所有带来的破坏性应用一起占用射频(RF)频谱的大规模和多样化的IOT设备。随着频谱嘎嘎和吞吐量挑战,这种大规模的无线设备暴露了前所未有的威胁表面。 RF指纹识别是预约的作为候选技术,可以与加密和零信任安全措施相结合,以确保无线网络中的数据隐私,机密性和完整性。在未来的通信网络中,在这项工作中,在未来的通信网络中的相关性,我们对RF指纹识别方法进行了全面的调查,从传统观点到最近的基于深度学习(DL)的算法。现有的调查大多专注于无线指纹方法的受限制呈现,然而,许多方面仍然是不可能的。然而,在这项工作中,我们通过解决信号智能(SIGINT),应用程序,相关DL算法,RF指纹技术的系统文献综述来缓解这一点,跨越过去二十年的RF指纹技术的系统文献综述,对数据集和潜在研究途径的讨论 - 必须以百科全书的方式阐明读者的必要条件。
translated by 谷歌翻译
近年来,在平衡(超级)图分配算法的设计和评估中取得了重大进展。我们调查了过去十年的实用算法的趋势,用于平衡(超级)图形分区以及未来的研究方向。我们的工作是对先前有关该主题的调查的更新。特别是,该调查还通过涵盖了超图形分区和流算法来扩展先前的调查,并额外关注并行算法。
translated by 谷歌翻译
编译器框架对于广泛使用基于FPGA的深度学习加速器来说是至关重要的。它们允许研究人员和开发人员不熟悉硬件工程,以利用域特定逻辑所获得的性能。存在传统人工神经网络的各种框架。然而,没有多大的研究努力已经进入创建针对尖刺神经网络(SNNS)进行优化的框架。这种新一代的神经网络对于在边缘设备上部署AI的越来越有趣,其具有紧密的功率和资源约束。我们的端到端框架E3NE为FPGA自动生成高效的SNN推理逻辑。基于Pytorch模型和用户参数,它应用各种优化,并评估基于峰值的加速器固有的权衡。多个水平的并行性和新出现的神经编码方案的使用导致优于先前的SNN硬件实现的效率。对于类似的型号,E3NE使用的硬件资源的少于50%,功率较低20%,同时通过幅度降低延迟。此外,可扩展性和通用性允许部署大规模的SNN模型AlexNet和VGG。
translated by 谷歌翻译
本文介绍了专门针对软件定义无线电(SDR)的新域特异性嵌入式语言(DSEL)。从一组精心设计的组件中,它可以构建有效的软件数字通信系统,能够以简单明了的方式利用现代处理器体系结构的并行性。特别是,提出的DSEL使管道和序列重复技术的组合能够从数字通信系统中提取时间和空间并行性。我们利用了真实用例上的DSEL功能:用于完全在软件中设计的广泛使用的DVB-S2标准的完全数字收发器。通过评估,我们展示了建议的软件DVB-S2收发器如何从现代高端多核CPU目标中获得最大的收益。
translated by 谷歌翻译
维数减少方法发现了巨大的应用程序作为不同科学领域的可视化工具。虽然存在许多不同的方法,但它们的性能通常不足以提供对许多当代数据集的快速深入了解,并且无监督的使用方式可防止用户利用数据集探​​索和微调可视化质量的细节方法。我们呈现开花,一种高性能半监督维度减少软件,用于具有数百万个单独的数据点的高维数据集的交互式用户可信可视化。 Blossom在GPU加速实施的EMBEDSOM算法的实现上,由几个基于地标的算法补充,用于将无监督模型学习算法与用户监督联系起来。我们展示了开花在现实数据集上的应用,在那里它有助于产生高质量的可视化,该可视化包含用户指定的布局并专注于某些功能。我们认为,半监督的维度减少将改善单细胞细胞谱系等科学领域的数据可视化可能性,并为数据集勘探和注释提供了新的方向的快速有效的基础方法。
translated by 谷歌翻译
通常,机器学习应用程序必须应对动态环境,其中数据以潜在无限长度和瞬态行为的连续数据流的形式收集。与传统(批量)数据挖掘相比,流处理算法对计算资源和对数据演进的适应性具有额外要求。它们必须逐步处理实例,因为数据的连续流量禁止存储多次通过的数据。合奏学习在这种情况下取​​得了显着的预测性能。实现为一组(几个)个别分类器,合奏是自然可用于任务并行性的。但是,用于捕获概念漂移的增量学习和动态数据结构增加了缓存未命中并阻碍了并行性的好处。本文提出了一种迷你批处理策略,可以改善多核环境中用于流挖掘的多个集合算法的内存访问局部性和性能。借助正式框架,我们证明迷你批量可以显着降低重用距离(以及缓存未命中的数量)。在六种不同的最先进的集合算法上应用四个基准数据集的六种不同特性的实验显示了8个核心处理器上高达5倍的加速。这些效益牺牲了预测性能的少量减少。
translated by 谷歌翻译
本文通过匹配的追求方法开发了一类低复杂设备调度算法,以实现空中联合学习。提出的方案紧密跟踪了通过差异编程实现的接近最佳性能,并且基于凸松弛的众所周知的基准算法极大地超越了众所周知的基准算法。与最先进的方案相比,所提出的方案在系统上构成了较低的计算负载:对于$ k $设备和参数服务器上的$ n $ antennas,基准的复杂性用$ \ left缩放(n^)2 + k \ right)^3 + n^6 $,而提出的方案量表的复杂性则以$ 0 <p,q \ leq 2 $为$ k^p n^q $。通过CIFAR-10数据集上的数值实验证实了所提出的方案的效率。
translated by 谷歌翻译
神经网络(NNS)越来越多地用于安全关键结构域和易于不可靠的环境(例如,软错误),例如在航天器上。因此,对NN推断赋予容错是至关重要的。基于算法的容错(ABFT)是作为NNS中的有效容错的有效方法。我们提出了一种自适应方法,用于对NN推断的ABFT开发出新的部署方案中的未开发机会。 GPU具有高计算到存储器带宽比率,而NN层具有各种算术强度。这将留下一些图层计算绑定和其他内存带宽绑定,但是Abft的当前方法不考虑这些差异。我们首先调查最适合这些方案的ABFT计划。然后,我们提出了强度引导的ABFT,一种自适应,算术强度引导方法,其为每个NN层选择最有效的ABFT方案。与传统方法与ABFT的传统方法相比,强度引导的ABFT将执行时间开销降低1.09--5.3 $ \ Times $。
translated by 谷歌翻译