机器学习(ML)加速化学发现的两个突出挑战是候选分子或材料的合成性以及ML模型训练中使用的数据的保真度。为了应对第一个挑战,我们构建了一个假设的设计空间,为3250万转型金属复合物(TMC),其中所有组成片段(即金属和配体)和配体对称性都可以合成。为了应对第二项挑战,我们在雅各布梯子的多个梯级之间的23个密度功能近似之间搜索预测的共识。为了加快这3250万TMC的筛选,我们使用有效的全局优化来样本候选低自旋发色团,同时具有低吸收能和低静态相关性。尽管在这个大化的化学空间中的潜在发色团缺乏(即$ <$ 0.01 \%),但随着ML模型在积极学习过程中的改善,我们确定了高可能性(即$> $ 10 \%)的过渡金属发色团(即$> $ 10 \%)。这代表发现的1,000倍加速度,与几天而不是几年中的发现相对应。对候选发色团的分析揭示了对CO(III)和具有更大键饱和度的大型强野配体的偏爱。我们根据时间依赖性密度功能理论计算计算帕累托前沿上有希望的发色团的吸收光谱,并验证其中三分之二是否需要激发态特性。尽管这些复合物从未经过实验探索,但它们的组成配体在文献中表现出有趣的光学特性,体现了我们构建现实的TMC设计空间和主动学习方法的有效性。
translated by 谷歌翻译
适当地识别和处理具有显着多参考(MR)特征的分子和材料对于在虚拟高通量筛选(VHT)中实现高数据保真度至关重要。然而,使用单一功能的近似密度泛函理论(DFT)进行大多数VHT。尽管发展了许多MR诊断,但这种诊断的单一价值的程度表明了对化学性质预测的MR效应不是很好的。我们评估超过10,000个过渡金属配合物(TMC)的MR诊断方法,并与有机分子中的那些进行比较。我们透露,只有一些MR诊断程序可在这些材料空间上转移。通过研究MR特征对涉及多个潜在能量表面的化学性质(即,MR效应)的影响(即绝热自旋分裂,$ \ DELTA E_ \ MATHRM {HL} $和电离潜力,IP),我们观察到这一点先生效应的取消超过积累。 MR特征的差异比预测物业预测中MR效应的先生特征的总程度更重要。通过这种观察,我们建立转移学习模型,直接预测CCSD(T)-Level绝热$ \ Delta e_ \ Mathrm {H-L} $和IP从较低的理论。通过将这些模型与不确定量化和多级建模相结合,我们引入了一种多管策略,可将数据采集加速至少三个,同时实现鲁棒VHT的化学精度(即1 kcal / mol)。
translated by 谷歌翻译
与更苛刻但准确的相关波函数理论相比,由于其成本准确性的权衡,近似密度功能理论(DFT)已成为必不可少的。然而,迄今为止,尚未确定具有通用精度的单个密度函数近似(DFA),从而导致DFT产生的数据质量的不确定性。通过电子密度拟合和转移学习,我们构建了DFA推荐使用者,该DFA选择以系统特异性方式相对于黄金标准但过度良好的耦合群集理论的DFA。我们在垂直旋转分解能量评估中证明了这种推荐的方法,用于具有挑战性的过渡金属复合物。我们的推荐人可以预测表现最佳的DFA,并产生出色的精度(约2 kcal/mol),可用于化学发现,表现优于单个传递学习模型和一组48 dFA中的单个最佳功能。我们证明了DFA推荐剂对具有独特化学的实验合成化合物的可传递性。
translated by 谷歌翻译
光活性虹膜复合物的应用广泛,因为它们的应用从照明到光催化。但是,从精确度和计算成本的角度来看,这些复合物的激发状态性能预测挑战了从头开始方法,例如时间依赖性密度功能理论(TDDFT),使高吞吐量虚拟筛选(HTVS)复杂化。相反,我们利用低成本的机器学习(ML)模型来预测光活性虹膜复合物的激发状态特性。我们使用1,380个虹膜复合物的实验数据来训练和评估ML模型,并确定最佳和最可转移的模型,是从低成本密度功能理论紧密结合计算的电子结构特征训练的模型。使用这些模型,我们预测所考虑的三个激发态性能,即磷光的平均发射能,激发态寿命和发射光谱积分,具有具有或取代TDDFT的精度。我们进行特征重要性分析,以确定哪些虹膜复杂属性控制激发状态的特性,并通过明确的例子来验证这些趋势。为了证明如何将ML模型用于HTV和化学发现的加速度,我们策划了一组新型的假设虹膜络合物,并确定了新磷剂设计的有希望的配体。
translated by 谷歌翻译
机器学习(ML) - 基卡化的发现需要大量的高保真数据来揭示预测结构性质关系。对于对材料发现的兴趣的许多性质,数据生成的具体性和高成本导致数据景观几乎没有人居住和可疑质量。开始克服这些限制的数据驱动技术包括在密度函数理论中使用共识,开发新功能或加速电子结构理论,以及检测到计算要求苛刻的方法是最必要的。当无法可靠地模拟属性时,大型实验数据集可用于培训ML模型。在没有手动策策的情况下,越来越复杂的自然语言处理和自动图像分析使得可以从文献中学习结构性质关系。在这些数据集上培训的模型将随着社区反馈而改善。
translated by 谷歌翻译
分子照片开关是光激活药物的基础。关键的照片开关是偶氮苯,它表现出对光线的反式cis异构主义。顺式异构体的热半衰期至关重要,因为它控制着光诱导的生物学效应的持续时间。在这里,我们介绍了一种计算工具,用于预测偶氮苯衍生物的热半衰期。我们的自动化方法使用了经过量子化学数据训练的快速准确的机器学习潜力。在建立在良好的早期证据的基础上,我们认为热异构化是通过Intersystem Crossing介导的旋转来进行的,并将这种机制纳入我们的自动化工作流程。我们使用我们的方法来预测19,000种偶氮苯衍生物的热半衰期。我们探索障碍和吸收波长之间的趋势和权衡,并开源我们的数据和软件以加速光精神病学研究。
translated by 谷歌翻译
计算催化和机器学习社区在开发用于催化剂发现和设计的机器学习模型方面取得了长足的进步。然而,跨越催化的化学空间的一般机器学习潜力仍然无法触及。一个重大障碍是在广泛的材料中获得访问培训数据的访问。缺乏数据的一类重要材料是氧化物,它抑制模型无法更广泛地研究氧气进化反应和氧化物电催化。为了解决这个问题,我们开发了开放的催化剂2022(OC22)数据集,包括62,521个密度功能理论(DFT)放松(〜9,884,504个单点计算),遍及一系列氧化物材料,覆盖范围,覆盖率和吸附物( *H, *o, *o, *o, *o, *o, * n, *c, *ooh, *oh, *oh2, *o2, *co)。我们定义广义任务,以预测催化过程中适用的总系统能量,发展几个图神经网络的基线性能(Schnet,Dimenet ++,Forcenet,Spinconv,Painn,Painn,Gemnet-DT,Gemnet-DT,Gemnet-OC),并提供预先定义的数据集分割以建立明确的基准,以实现未来的努力。对于所有任务,我们研究组合数据集是否会带来更好的结果,即使它们包含不同的材料或吸附物。具体而言,我们在Open Catalyst 2020(OC20)数据集和OC22上共同训练模型,或OC22上的微调OC20型号。在最一般的任务中,Gemnet-OC看到通过微调来提高了约32%的能量预测,通过联合训练的力预测提高了约9%。令人惊讶的是,OC20和较小的OC22数据集的联合培训也将OC20的总能量预测提高了约19%。数据集和基线模型是开源的,公众排行榜将遵循,以鼓励社区的持续发展,以了解总能源任务和数据。
translated by 谷歌翻译
可拍照的分子显示了可以使用光访问的两个或多个异构体形式。将这些异构体的电子吸收带分开是选择性解决特定异构体并达到高光稳态状态的关键,同时总体红色转移带来的吸收带可以限制因紫外线暴露而限制材料损害,并增加了光疗法应用中的渗透深度。但是,通过合成设计将这些属性工程为系统仍然是一个挑战。在这里,我们提出了一条数据驱动的发现管道,用于由数据集策划和使用高斯过程的多任务学习支撑的分子照片开关。在对电子过渡波长的预测中,我们证明了使用来自四个Photoswitch转变波长的标签训练的多输出高斯过程(MOGP)产生相对于单任务模型的最强预测性能,并且在操作上超过了时间依赖时间依赖性的密度理论(TD) -dft)就预测的墙壁锁定时间而言。我们通过筛选可商购的可拍摄分子库来实验验证我们提出的方法。通过此屏幕,我们确定了几个图案,这些基序显示了它们的异构体的分离电子吸收带,表现出红移的吸收,并且适用于信息传输和光电学应用。我们的策划数据集,代码以及所有型号均可在https://github.com/ryan-rhys/the-photoswitch-dataset上提供
translated by 谷歌翻译
由于控制结构特性关系的分子间相互作用的微妙平衡,预测由分子构建块形成的晶体结构的稳定性是一个高度非平凡的科学问题。一种特别活跃和富有成果的方法涉及对相互作用的化学部分的不同组合进行分类,因为了解不同相互作用的相对能量可以使分子晶体的设计和微调其稳定性。尽管这通常是基于对已知晶体结构中最常见的基序的经验观察进行的,但我们建议采用有监督和无监督的机器学习技术的组合来自动化分子构建块的广泛库。我们介绍了一个针对有机晶体的结合能量预测的结构描述符,并利用以原子为中心的性质来获得对不同化学基团对晶体晶格能量的贡献的数据驱动评估。然后,我们使用结构 - 能量景观的低维表示来解释该库,并讨论可以从本分析中提取的见解的选定示例,从而提供了一个完整的数据库来指导分子材料的设计。
translated by 谷歌翻译
Deep learning models that leverage large datasets are often the state of the art for modelling molecular properties. When the datasets are smaller (< 2000 molecules), it is not clear that deep learning approaches are the right modelling tool. In this work we perform an extensive study of the calibration and generalizability of probabilistic machine learning models on small chemical datasets. Using different molecular representations and models, we analyse the quality of their predictions and uncertainties in a variety of tasks (binary, regression) and datasets. We also introduce two simulated experiments that evaluate their performance: (1) Bayesian optimization guided molecular design, (2) inference on out-of-distribution data via ablated cluster splits. We offer practical insights into model and feature choice for modelling small chemical datasets, a common scenario in new chemical experiments. We have packaged our analysis into the DIONYSUS repository, which is open sourced to aid in reproducibility and extension to new datasets.
translated by 谷歌翻译
定量探索了量子化学参考数据的训练神经网络(NNS)预测的不确定性量化的价值。为此,适当地修改了Physnet NN的体系结构,并使用不同的指标评估所得模型,以量化校准,预测质量以及预测误差和预测的不确定性是否可以相关。 QM9数据库培训的结果以及分布内外的测试集的数据表明,错误和不确定性与线性无关。结果阐明了噪声和冗余使分子的性质预测复杂化,即使在发生变化的情况下,例如在两个原本相同的分子中的双键迁移 - 很小。然后将模型应用于互变异反应的真实数据库。分析特征空间中的成员之间的距离与其他参数结合在一起表明,训练数据集中的冗余信息会导致较大的差异和小错误,而存在相似但非特定的信息的存在会返回大错误,但差异很小。例如,这是对含硝基的脂肪族链的观察到的,尽管训练集包含了与芳香族分子结合的硝基组的几个示例,但这些预测很困难。这强调了训练数据组成的重要性,并提供了化学洞察力,以了解这如何影响ML模型的预测能力。最后,提出的方法可用于通过主动学习优化基于信息的化学数据库改进目标应用程序。
translated by 谷歌翻译
实现一般逆设计可以通过用户定义的属性极大地加速对新材料的发现。然而,最先进的生成模型往往限于特定的组成或晶体结构。这里,我们提出了一种能够一般逆设计的框架(不限于给定的一组元件或晶体结构),其具有在实际和往复空间中编码晶体的广义可逆表示,以及来自变分的属性结构潜空间autoencoder(vae)。在三种设计情况下,该框架通过用户定义的形成能量,带隙,热电(TE)功率因数和组合产生142个新晶体。在训练数据库中缺席的这些生成的晶体通过第一原理计算验证。成功率(验证的第一原理验证的目标圆形晶体/数量的设计晶体)范围为7.1%和38.9%。这些结果表示利用生成模型朝着性质驱动的一般逆设计的重要步骤,尽管在与实验合成结合时仍然存在实际挑战。
translated by 谷歌翻译
Computational catalysis is playing an increasingly significant role in the design of catalysts across a wide range of applications. A common task for many computational methods is the need to accurately compute the minimum binding energy - the adsorption energy - for an adsorbate and a catalyst surface of interest. Traditionally, the identification of low energy adsorbate-surface configurations relies on heuristic methods and researcher intuition. As the desire to perform high-throughput screening increases, it becomes challenging to use heuristics and intuition alone. In this paper, we demonstrate machine learning potentials can be leveraged to identify low energy adsorbate-surface configurations more accurately and efficiently. Our algorithm provides a spectrum of trade-offs between accuracy and efficiency, with one balanced option finding the lowest energy configuration, within a 0.1 eV threshold, 86.63% of the time, while achieving a 1387x speedup in computation. To standardize benchmarking, we introduce the Open Catalyst Dense dataset containing nearly 1,000 diverse surfaces and 87,045 unique configurations.
translated by 谷歌翻译
机器学习方法有可能以计算有效的方式近似于原子模拟的密度功能理论(DFT),这可能会大大增加计算模拟对现实世界问题的影响。但是,它们受到其准确性和生成标记数据的成本的限制。在这里,我们提出了一个在线主动学习框架,该框架通过合并了开放催化剂项目的大规模预训练的图形神经网络模型,通过合并了先前的物理信息,从而有效,准确地加速了原子系统的模拟。加速这些模拟使有用的数据更便宜地生成,从而可以训练更好的模型,并可以筛选更多的原子系统。我们还提出了一种基于其速度和准确性比较局部优化技术的方法。 30基准测试吸附剂催化剂系统的实验表明,我们的转移学习方法以预先训练模型合并先前的信息通过将DFT计算的数量减少91%,从而加速模拟,同时达到0.02 EV的准确性阈值93%。 。最后,我们展示了一种技术,用于利用VAS中内置的交互式功能,以在我们的在线活动框架内有效地计算单点计算,而无需大量启动成本。这使VASP与我们的框架同时起作用,同时需要比常规的单点计算要少75%。在GitHub的开源Finetuna软件包中可用在线主动学习实现以及使用VASP交互式代码的示例。
translated by 谷歌翻译
促性腺营养蛋白释放激素受体(GNRH1R)是治疗子宫疾病的有前途的治疗靶标。迄今为止,在临床研究中可以使用几个GNRH1R拮抗剂,而不满足多个财产约束。为了填补这一空白,我们旨在开发一个基于学习的框架,以促进有效,有效地发现具有理想特性的新的口服小型分子药物靶向GNRH1R。在目前的工作中,首先通过充分利用已知活性化合物和靶蛋白的结构的信息,首先提出了配体和结构组合模型,即LS-Molgen,首先提出了分子生成的方法,该信息通过其出色的性能证明了这一点。比分别基于配体或结构方法。然后,进行了A中的计算机筛选,包括活性预测,ADMET评估,分子对接和FEP计算,其中约30,000个生成的新型分子被缩小到8,以进行实验合成和验证。体外和体内实验表明,其中三个表现出有效的抑制活性(化合物5 IC50 = 0.856 nm,化合物6 IC50 = 0.901 nm,化合物7 IC50 = 2.54 nm对GNRH1R,并且化合物5在基本PK属性中表现良好例如半衰期,口服生物利用度和PPB等。我们认为,提议的配体和结构组合结合的分子生成模型和整个计算机辅助工作流程可能会扩展到从头开始的类似任务或铅优化的类似任务。
translated by 谷歌翻译
自从人类文明的早期阶段以来已知的石榴石在现代技术中发现了重要的应用,包括磁性限制,Spintronics,锂电池等。绝大多数实验性的石榴石是氧化物,而探索(实验或理论)在其余的探索中是氧化物化学空间的范围受到限制。一个关键问题是石榴石结构具有较大的原始单位单元格,需要大量的计算资源。为了对新石榴石的完整化学空间进行全面搜索,我们将图形神经网络中的最新进展与高通量计算结合在一起。我们应用机器学习模型来在系统密度功能的计算之前识别电势(meta-)稳定的石榴石系统以验证预测。通过这种方式,我们发现了600多个三元石榴石,距凸壳以下的凸壳距离低于100〜MEV/ATOM,具有各种物理和化学性质。这包括硫化物,氮化物和卤化物石榴石。为此,我们分析电子结构,并讨论电子带隙和电荷平衡的值之间的联系。
translated by 谷歌翻译
虽然最近在许多科学领域都变得无处不在,但对其评估的关注较少。对于分子生成模型,最先进的是孤立或与其输入有关的输出。但是,它们的生物学和功能特性(例如配体 - 靶标相互作用)尚未得到解决。在这项研究中,提出了一种新型的生物学启发的基准,用于评估分子生成模型。具体而言,设计了三个不同的参考数据集,并引入了与药物发现过程直接相关的一组指标。特别是我们提出了一个娱乐指标,将药物目标亲和力预测和分子对接应用作为评估生成产量的互补技术。虽然所有三个指标均在测试的生成模型中均表现出一致的结果,但对药物目标亲和力结合和分子对接分数进行了更详细的比较,表明单峰预测器可能会导致关于目标结合在分子水平和多模式方法的错误结论,而多模式的方法是错误的结论。因此优选。该框架的关键优点是,它通过明确关注配体 - 靶标相互作用,将先前的物理化学域知识纳入基准测试过程,从而创建了一种高效的工具,不仅用于评估分子生成型输出,而且还用于丰富富含分子生成的输出。一般而言,药物发现过程。
translated by 谷歌翻译
剪切粘度虽然是所有液体的基本特性,但在计算上估计分子动力学模拟的计算昂贵。最近,机器学习(ML)方法已被用于在许多情况下增强分子模拟,从而显示出以相对廉价的方式估算粘度的希望。但是,ML方法面临重大挑战,例如当数据集的大小很小时,粘度也很小。在这项工作中,我们训练多个ML模型,以预测Lennard-Jones(LJ)流体的剪切粘度,特别强调解决由小型数据集引起的问题。具体而言,研究了与模型选择,绩效估计和不确定性定量有关的问题。首先,我们表明使用单个看不见的数据集的广泛使用的性能估计步骤显示了小数据集的广泛可变性。在这种情况下,可以使用交叉验证(CV)选择超参数(模型选择)的常见实践,以估算概括误差(性能估计)。我们比较了两个简单的简历程序,以便他们同时选择模型选择和性能估计的能力,并发现基于K折CV的过程显示出较低的误差估计差异。我们讨论绩效指标在培训和评估中的作用。最后,使用高斯工艺回归(GPR)和集合方法来估计单个预测的不确定性。 GPR的不确定性估计还用于构建适用性域,使用ML模型对本工作中生成的另一个小数据集提供了更可靠的预测。总体而言,这项工作中规定的程序共同导致了针对小型数据集的强大ML模型。
translated by 谷歌翻译
电子密度$ \ rho(\ vec {r})$是用密度泛函理论(dft)计算地面能量的基本变量。除了总能量之外,$ \ rho(\ vec {r})$分布和$ \ rho(\ vec {r})$的功能通常用于捕获电子规模以功能材料和分子中的关键物理化学现象。方法提供对$ \ rho(\ vec {r})的可紊乱系统,其具有少量计算成本的复杂无序系统可以是对材料相位空间的加快探索朝向具有更好功能的新材料的逆设计的游戏更换者。我们为预测$ \ rho(\ vec {r})$。该模型基于成本图形神经网络,并且在作为消息传递图的一部分的特殊查询点顶点上预测了电子密度,但仅接收消息。该模型在多个数据组中进行测试,分子(QM9),液体乙烯碳酸酯电解质(EC)和Lixniymnzco(1-Y-Z)O 2锂离子电池阴极(NMC)。对于QM9分子,所提出的模型的准确性超过了从DFT获得的$ \ Rho(\ vec {r})$中的典型变异性,以不同的交换相关功能,并显示超出最先进的准确性。混合氧化物(NMC)和电解质(EC)数据集更好的精度甚至更好。线性缩放模型同时探测成千上万点的能力允许计算$ \ Rho(\ vec {r})$的大型复杂系统,比DFT快于允许筛选无序的功能材料。
translated by 谷歌翻译
我们引入了基于高斯工艺回归和边缘化图内核(GPR-MGK)的探索性主动学习(AL)算法,以最低成本探索化学空间。使用高通量分子动力学模拟生成数据和图神经网络(GNN)以预测,我们为热力学性质预测构建了一个主动学习分子模拟框架。在特定的靶向251,728个烷烃分子中,由4至19个碳原子及其液体物理特性组成:密度,热能和汽化焓,我们使用AL算法选择最有用的分子来代表化学空间。计算和实验测试集的验证表明,只有313个(占总数的0.124 \%)分子足以训练用于计算测试集的$ \ rm r^2> 0.99 $的精确GNN模型和$ \ rm rm r^2>>实验测试集0.94 $。我们重点介绍了提出的AL算法的两个优点:与高通量数据生成和可靠的不确定性量化的兼容性。
translated by 谷歌翻译