疾病预测是医学应用中的知名分类问题。 GCNS提供了一个强大的工具,用于分析患者相对于彼此的特征。这可以通过将问题建模作为图形节点分类任务来实现,其中每个节点是患者。由于这种医学数据集的性质,类别不平衡是疾病预测领域的普遍存在问题,其中类的分布是歪曲的。当数据中存在类别不平衡时,现有的基于图形的分类器倾向于偏向于主要类别并忽略小类中的样本。另一方面,所有患者中罕见阳性病例的正确诊断在医疗保健系统中至关重要。在传统方法中,通过将适当的权重分配给丢失函数中的类别来解决这种不平衡,这仍然依赖于对异常值敏感的权重的相对值,并且在某些情况下偏向于小类(ES)。在本文中,我们提出了一种重加权的对抗性图形卷积网络(RA-GCN),以防止基于图形的分类器强调任何特定类的样本。这是通过将基于图形的神经网络与每个类相关联来完成的,这负责加权类样本并改变分类器的每个样本的重要性。因此,分类器自身调节并确定类之间的边界,更加关注重要样本。分类器和加权网络的参数受到侵犯方法训练。我们在合成和三个公共医疗数据集上显示实验。与最近的方法相比,ra-gcn展示了与最近的方法在所有三个数据集上识别患者状态的方法相比。详细分析作为合成数据集的定量和定性实验提供。
translated by 谷歌翻译
近年来,图形神经网络(GNNS)已实现了节点分类的最新性能。但是,大多数现有的GNN会遭受图形不平衡问题。在许多实际情况下,节点类都是不平衡的,其中一些多数类构成了图的大部分部分。 GNN中的消息传播机制将进一步扩大这些多数类的主导地位,从而导致次级分类性能。在这项工作中,我们试图通过生成少数族裔类实例来平衡培训数据,从而扩展了以前的基于过度采样的技术来解决这个问题。此任务是不平凡的,因为这些技术的设计是实例是独立的。忽视关系信息会使此过采样过程变得复杂。此外,节点分类任务通常仅使用少数标记的节点进行半监督设置,从而为少数族裔实例的产生提供了不足的监督。生成的低质量新节点会损害训练有素的分类器。在这项工作中,我们通过在构造的嵌入空间中综合新节点来解决这些困难,该节点编码节点属性和拓扑信息。此外,对边缘生成器进行同时训练,以建模图结构并为新样品提供关系。为了进一步提高数据效率,我们还探索合成的混合``中间''节点在此过度采样过程中利用多数类的节点。对现实世界数据集的实验验证了我们提出的框架的有效性。
translated by 谷歌翻译
节点分类是图神经网络中的重要任务,但是大多数现有研究都认为来自不同类别的样本是平衡的。但是,类不平衡问题是普遍的,可能会严重影响模型的性能。减少数据集对模型培训的不利影响对于改善模型的性能至关重要。因此,基于传统算法级别的方法来重建新的损失函数FD损失。首先,我们提出样品不种种量的距离,以根据分布过滤边缘样品和简单样品。然后,根据不抗测量距离定义了权重系数,并在损耗函数加权项中使用,以便损耗函数仅集中在有价值的样本上。与节点分类任务中的现有方法相比,几个基准的实验表明,我们的损耗函数可以有效地解决样品节点不平衡问题并将分类精度提高4%。
translated by 谷歌翻译
使用不平衡数据集的二进制分类具有挑战性。模型倾向于将所有样本视为属于多数类的样本。尽管现有的解决方案(例如抽样方法,成本敏感方法和合奏学习方法)提高了少数族裔类别的准确性,但这些方法受到过度拟合问题或难以决定的成本参数的限制。我们提出了HADR,这是一种降低尺寸的混合方法,包括数据块构建,降低性降低和与深度神经网络分类器的合奏学习。我们评估了八个不平衡的公共数据集的性能,从召回,g均值和AUC方面。结果表明,我们的模型优于最先进的方法。
translated by 谷歌翻译
图形神经网络(GNNS)在学习图表表示中取得了前所未有的成功,以识别图形的分类标签。然而,GNN的大多数现有图形分类问题遵循平衡数据拆分协议,这与许多真实情景中的许多实际方案都有比其他类别更少的标签。在这种不平衡情况下直接培训GNN可能导致少数群体类别中的图形的无色表达,并损害下游分类的整体性能,这意味着开发有效GNN处理不平衡图分类的重要性。现有方法是针对非图形结构数据量身定制的,或专为不平衡节点分类而设计,而少数关注不平衡图分类。为此,我们介绍了一个新颖的框架,图形图形 - 图形神经网络(G $ ^ 2 $ GNN),通过从邻近图和本地从图形本身来源地通过全局导出额外的监督来减轻图形不平衡问题。在全球范围内,我们基于内核相似性构建图表(GOG)的图表,并执行GOG传播以聚合相邻图形表示,其最初通过通过GNN编码器汇集的节点级传播而获得。在本地,我们通过掩模节点或丢弃边缘采用拓扑增强,以改善辨别说明书测试图的拓扑结构中的模型概括性。在七个基准数据集中进行的广泛图形分类实验证明了我们提出的G $ ^ $ ^ 2 $ GNN优于F1-Macro和F1-Micro Scores的大约5 \%的大量基线。 G $ ^ 2 $ GNN的实现可用于\ href {https://github.com/yuwvandy/g2gnn} {https://github.com/yuwvandy/g2gnn}。
translated by 谷歌翻译
Graph serves as a powerful tool for modeling data that has an underlying structure in non-Euclidean space, by encoding relations as edges and entities as nodes. Despite developments in learning from graph-structured data over the years, one obstacle persists: graph imbalance. Although several attempts have been made to target this problem, they are limited to considering only class-level imbalance. In this work, we argue that for graphs, the imbalance is likely to exist at the sub-class topology group level. Due to the flexibility of topology structures, graphs could be highly diverse, and learning a generalizable classification boundary would be difficult. Therefore, several majority topology groups may dominate the learning process, rendering others under-represented. To address this problem, we propose a new framework {\method} and design (1 a topology extractor, which automatically identifies the topology group for each instance with explicit memory cells, (2 a training modulator, which modulates the learning process of the target GNN model to prevent the case of topology-group-wise under-representation. {\method} can be used as a key component in GNN models to improve their performances under the data imbalance setting. Analyses on both topology-level imbalance and the proposed {\method} are provided theoretically, and we empirically verify its effectiveness with both node-level and graph-level classification as the target tasks.
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
图表卷积神经网络(GCNS)广泛用于图形分析。具体地,在医学应用中,GCNS可用于群体图中的疾病预测,其中曲线图节点代表个体,边缘代表个体相似度。然而,GCNS依赖于大量数据,这是对单一医学机构收集的具有挑战性。此外,大多数医疗机构继续面临的危急挑战是用不完全的数据信息分离地解决疾病预测。为了解决这些问题,联合学习(FL)允许隔离本地机构协作,没有数据共享的全局模型。在这项工作中,我们提出了一个框架FEDNI,通过FL释放网络染色和机构间数据。具体地,我们首先使用图形生成的对冲网络(GaN)联接捕获缺少节点和边缘预测器来完成本地网络的缺失信息。然后我们使用联合图形学习平台跨过机构训练全局GCN节点分类器。新颖的设计使我们能够通过利用联合学习和图表学习方法来构建更准确的机器学习模型。我们证明,我们的联邦模式优于本地和基线流动方法,在两个公共神经影像数据集中具有显着的边缘。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
由于相邻的节点之间的相互作用,在类不平衡的图形数据下学习无偏的节点表示具有挑战性。现有研究的共同点是,它们根据其总数(忽略图中的节点连接)来补偿次要类节点“作为组”,这不可避免地增加了主要节点的假阳性病例。我们假设这些假阳性病例的增加受到每个节点周围的标签分布的高度影响,并通过实验确认。此外,为了解决这个问题,我们提出了拓扑意识的利润率(TAM),以反映学习目标的本地拓扑。我们的方法将每个节点的连通性模式与类平均反向零件进行比较,并根据此相应地适应边缘。我们的方法始终在具有代表性GNN体系结构的各种节点分类基准数据集上表现出优于基线的优势。
translated by 谷歌翻译
不平衡的数据(ID)是阻止机器学习(ML)模型以实现令人满意的结果的问题。 ID是一种情况,即属于一个类别的样本的数量超过另一个类别的情况,这使此类模型学习过程偏向多数类。近年来,为了解决这个问题,已经提出了几种解决方案,该解决方案选择合成为少数族裔类生成新数据,或者减少平衡数据的多数类的数量。因此,在本文中,我们研究了基于深神经网络(DNN)和卷积神经网络(CNN)的方法的有效性,并与各种众所周知的不平衡数据解决方案混合,这意味着过采样和降采样。为了评估我们的方法,我们使用了龙骨,乳腺癌和Z-Alizadeh Sani数据集。为了获得可靠的结果,我们通过随机洗牌的数据分布进行了100次实验。分类结果表明,混合的合成少数族裔过采样技术(SMOTE) - 正态化-CNN优于在24个不平衡数据集上达到99.08%精度的不同方法。因此,提出的混合模型可以应用于其他实际数据集上的不平衡算法分类问题。
translated by 谷歌翻译
本文研究了跨网络节点分类的问题,以克服单个网络中标记的数据的不足。它旨在利用部分标记的源网络中的标签信息来帮助完全未标记或部分标记的目标网络中的节点分类。由于跨网络的域转移,现有的单网络学习方法无法解决此问题。一些多网络学习方法在很大程度上依赖于跨网络连接的存在,因此对于此问题是不适用的。为了解决这个问题,我们提出了一种小说\ textColor {black} {graph}通过利用对抗域的适应和图形卷积的技术来传递学习框架。它由两个组成部分组成:半监督的学习组件和一个对抗域的适应性组件。前者的目标是通过源网络和目标网络的给定标签信息学习类别的歧视节点表示,而后者则有助于减轻源和目标域之间的分布差异以促进知识传递。对现实世界数据集的广泛经验评估表明,ADAGCN可以在源网络上以低标签速率成功传输类信息,并且源和目标域之间的差异很大。复制实验结果的源代码可在https://github.com/daiquanyu/adagcn上获得。
translated by 谷歌翻译
图表表示学习是一种快速增长的领域,其中一个主要目标是在低维空间中产生有意义的图形表示。已经成功地应用了学习的嵌入式来执行各种预测任务,例如链路预测,节点分类,群集和可视化。图表社区的集体努力提供了数百种方法,但在所有评估指标下没有单一方法擅长,例如预测准确性,运行时间,可扩展性等。该调查旨在通过考虑算法来评估嵌入方法的所有主要类别的图表变体,参数选择,可伸缩性,硬件和软件平台,下游ML任务和多样化数据集。我们使用包含手动特征工程,矩阵分解,浅神经网络和深图卷积网络的分类法组织了图形嵌入技术。我们使用广泛使用的基准图表评估了节点分类,链路预测,群集和可视化任务的这些类别算法。我们在Pytorch几何和DGL库上设计了我们的实验,并在不同的多核CPU和GPU平台上运行实验。我们严格地审查了各种性能指标下嵌入方法的性能,并总结了结果。因此,本文可以作为比较指南,以帮助用户选择最适合其任务的方法。
translated by 谷歌翻译
图表学习目的旨在将节点内容与图形结构集成以学习节点/图表示。然而,发现许多现有的图形学习方法在具有高异性级别的数据上不能很好地工作,这是不同类标签之间很大比例的边缘。解决这个问题的最新努力集中在改善消息传递机制上。但是,尚不清楚异质性是否确实会损害图神经网络(GNNS)的性能。关键是要展现一个节点与其直接邻居之间的关系,例如它们是异性还是同质性?从这个角度来看,我们在这里研究了杂质表示在披露连接节点之间的关系之前/之后的杂音表示的作用。特别是,我们提出了一个端到端框架,该框架既学习边缘的类型(即异性/同质性),并利用边缘类型的信息来提高图形神经网络的表现力。我们以两种不同的方式实施此框架。具体而言,为了避免通过异质边缘传递的消息,我们可以通过删除边缘分类器鉴定的异性边缘来优化图形结构。另外,可以利用有关异性邻居的存在的信息进行特征学习,因此,设计了一种混合消息传递方法来汇总同质性邻居,并根据边缘分类使异性邻居多样化。广泛的实验表明,在整个同质级别的多个数据集上,通过在多个数据集上提出的框架对GNN的绩效提高了显着提高。
translated by 谷歌翻译
图形神经网络(GNNS)在提供图形结构时良好工作。但是,这种结构可能并不总是在现实世界应用中可用。该问题的一个解决方案是推断任务特定的潜在结构,然后将GNN应用于推断的图形。不幸的是,可能的图形结构的空间与节点的数量超级呈指数,因此任务特定的监督可能不足以学习结构和GNN参数。在这项工作中,我们提出了具有自我监督或拍打的邻接和GNN参数的同时学习,这是通过自我监督来推断图形结构的更多监督的方法。一个综合实验研究表明,缩小到具有数十万个节点的大图和胜过了几种模型,以便在已建立的基准上学习特定于任务的图形结构。
translated by 谷歌翻译
International initiatives such as METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) have collected several multigenomic and clinical data sets to identify the undergoing molecular processes taking place throughout the evolution of various cancers. Numerous Machine Learning and statistical models have been designed and trained to analyze these types of data independently, however, the integration of such differently shaped and sourced information streams has not been extensively studied. To better integrate these data sets and generate meaningful representations that can ultimately be leveraged for cancer detection tasks could lead to giving well-suited treatments to patients. Hence, we propose a novel learning pipeline comprising three steps - the integration of cancer data modalities as graphs, followed by the application of Graph Neural Networks in an unsupervised setting to generate lower-dimensional embeddings from the combined data, and finally feeding the new representations on a cancer sub-type classification model for evaluation. The graph construction algorithms are described in-depth as METABRIC does not store relationships between the patient modalities, with a discussion of their influence over the quality of the generated embeddings. We also present the models used to generate the lower-latent space representations: Graph Neural Networks, Variational Graph Autoencoders and Deep Graph Infomax. In parallel, the pipeline is tested on a synthetic dataset to demonstrate that the characteristics of the underlying data, such as homophily levels, greatly influence the performance of the pipeline, which ranges between 51\% to 98\% accuracy on artificial data, and 13\% and 80\% on METABRIC. This project has the potential to improve cancer data understanding and encourages the transition of regular data sets to graph-shaped data.
translated by 谷歌翻译
图形神经网络(GNN)是通过学习通用节点表示形式来建模和处理图形结构数据的主要范例。传统的培训方式GNNS取决于许多标记的数据,这导致了成本和时间的高需求。在某个特殊场景中,它甚至不可用。可以通过图形结构数据本身生成标签的自我监督表示学习是解决此问题的潜在方法。并且要研究对异质图的自学学习问题的研究比处理同质图更具挑战性,对此,研究也更少。在本文中,我们通过基于Metapath(SESIM)的结构信息提出了一种用于异质图的自我监督学习方法。提出的模型可以通过预测每个Metapath中节点之间的跳跃数来构建借口任务,以提高主任务的表示能力。为了预测跳跃数量,Sesim使用数据本身来生成标签,避免了耗时的手动标签。此外,预测每个Metapath中的跳跃数量可以有效地利用图形结构信息,这是节点之间的重要属性。因此,Sesim加深对图形结构模型的理解。最后,我们共同培训主要任务和借口任务,并使用元学习来平衡借口任务对主要任务的贡献。经验结果验证了SESIM方法的性能,并证明该方法可以提高传统神经网络在链接预测任务和节点分类任务上的表示能力。
translated by 谷歌翻译
现实世界中的大规模图形数据通常是动态而不是静态。数据随着时间的推移而出现的新节点,边缘,甚至是类,例如引用网络和研发协作网络。图形神经网络(GNNS)已成为众多关于图形结构数据的任务的标准方法。在这项工作中,我们采用了两步程序来探索GNN如何递增地适应新的未完成图形数据。首先,我们分析标准基准数据集的转换和归纳学习之间的边缘。在归纳预测后,我们将未标记的数据添加到图表中并显示模型稳定。然后,我们探索不断添加越来越多的标记数据的情况,同时考虑案例,在任何情况下都没有使用类标签注释。此外,我们在图表演变时介绍了新的类,并探索了自动检测来自先前看不见的类学的方法。为了以原则的方式处理不断发展的图形,我们提出了一个终身学习框架,用于图表数据以及评估协议。在本框架中,我们评估代表性的GNN架构。我们观察到模型参数内的隐式知识在显式知识时变得更加重要,即来自过去任务的数据,是有限的。我们发现,在开放世界节点分类中,令人惊讶地少数过去任务的数据足以达到通过从所有过去任务中记住数据达到的性能。在看不见的类检测的具有挑战性任务中,我们发现使用加权交叉熵损失对于稳定性很重要。
translated by 谷歌翻译
预训练在机器学习的不同领域表现出成功,例如计算机视觉,自然语言处理(NLP)和医学成像。但是,尚未完全探索用于临床数据分析。记录了大量的临床记录,但是对于在小型医院收集的数据或处理罕见疾病的数据仍可能稀缺数据和标签。在这种情况下,对较大的未标记临床数据进行预训练可以提高性能。在本文中,我们提出了专为异质的多模式临床数据设计的新型无监督的预训练技术,用于通过蒙版语言建模(MLM)启发的患者预测,通过利用对人群图的深度学习来启发。为此,我们进一步提出了一个基于图形转换器的网络,该网络旨在处理异质临床数据。通过将基于掩盖的预训练与基于变压器的网络相结合,我们将基于掩盖的其他域中训练的成功转化为异质临床数据。我们使用三个医学数据集Tadpole,Mimic-III和一个败血症预测数据集,在自我监督和转移学习设置中展示了我们的预训练方法的好处。我们发现,我们提出的培训方法有助于对患者和人群水平的数据进行建模,并提高所有数据集中不同微调任务的性能。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译