尽管辐射学家常规使用电子健康记录(EHR)数据来形成临床历史并通知图像解释,但医学成像的大多数深度学习架构是单向的,即,它们只能从像素级信息中学习特征。最近的研究揭示了如何从像素数据中恢复种族,仅突出显示模型中的严重偏差的可能性,这未能考虑人口统计数据和其他关键患者属性。然而,缺乏捕获临床背景的成像数据集,包括人口统计学和纵向病史,具有偏远的多式化医学成像。为了更好地评估这些挑战,我们呈现RadFusion,一种多式联运,基准数据集1794名患者的相应EHR数据和高分辨率计算断层扫描(CT)扫描标记为肺栓塞。我们评估了几个代表性的多模式融合模型,并在受保护的亚组中,例如性别,种族/种族,年龄的年龄。我们的研究结果表明,集成成像和EHR数据可以提高分类性能和鲁棒性,而不会在人口群之间的真正阳性率下引入大的差异。
translated by 谷歌翻译
受益于医疗保健数据的数字化和计算能力的发展,机器学习方法越来越多地用于医疗领域。在医疗保健机器学习中已经确定了公平性问题,导致对有限医疗资源的不公平分配或某些群体的健康风险过多。因此,解决公平问题最近引起了医疗保健社区的越来越多的关注。然而,机器学习的机器学习与机器学习中的公平性的交集仍在研究中。在这篇综述中,我们通过暴露公平问题,总结可能的偏见,整理缓解方法并指出挑战以及未来的机会来建立桥梁。
translated by 谷歌翻译
深度学习已被证明可以准确评估“隐藏”表型,并从传统临床医生对医学成像的解释之外的医学成像中预测生物标志物。鉴于人工智能(AI)模型的黑匣子性质,应在将模型应用于医疗保健时谨慎,因为预测任务可能会因疾病和患者人群的人口统计学差异而短路。使用来自两个医疗保健系统的大超声心动图数据集,我们测试使用深度学习算法从心脏超声图像中预测年龄,种族和性别,并评估各种混杂变量的影响。我们培训了基于视频的卷积神经网络,以预测年龄,性别和种族。我们发现,深度学习模型能够确定年龄和性别,同时无法可靠地预测种族。不考虑类别之间的混淆差异,AI模型预测性别为0.85(95%CI 0.84-0.86),年龄为9.12年的平均绝对误差为9.12年(95%CI 9.00-9.25),从AUC进行竞赛, 0.63-0.71。在预测种族时,我们表明,在培训数据中调整混杂变量(性别)的比例会显着影响AUC(从0.57到0.84),而在训练性别预测模型中,调整混杂因素(Race)并未实质性更改AUC(0.81-0.83)。这表明该模型在预测种族方面的表现很大一部分可能来自AI检测到的混杂功能。进一步的工作仍然是确定与人口统计信息相关的特定成像功能,并更好地了解医学AI中人口统计学识别的风险,因为它与潜在的偏见和差异有关。
translated by 谷歌翻译
疾病鉴定是观察健康研究中的核心,常规活动。队列影响下游分析,例如如何表征病情,定义患者的风险以及研究哪些治疗方法。因此,至关重要的是要确保选定的队列代表所有患者,而与他们的人口统计学或社会决定因素无关。虽然在构建可能影响其公平性的表型定义时有多种潜在的偏见来源,但在表型领域中考虑不同定义在患者亚组中的影响并不是标准。在本文中,我们提出了一组最佳实践来评估表型定义的公平性。我们利用预测模型中常用的既定公平指标,并将其与常用的流行病学队列描述指标联系起来。我们描述了一项针对克罗恩病和2型糖尿病的实证研究,每个研究都有从两组患者亚组(性别和种族)中从文献中获取的多种表型定义。我们表明,根据不同的公平指标和亚组,不同的表型定义表现出较大和不同的性能。我们希望拟议的最佳实践可以帮助构建公平和包容的表型定义。
translated by 谷歌翻译
在急诊室(ER)环境中,中风分类或筛查是一个普遍的挑战。由于MRI的慢速吞吐量和高成本,通常会进行快速CT而不是MRI。在此过程中通常提到临床测试,但误诊率仍然很高。我们提出了一个新型的多模式深度学习框架,深沉的中风,以通过识别较小的面部肌肉不协调的模式来实现计算机辅助中风的存在评估,并使怀疑急性环境中的中风的患者无能为力。我们提出的深雷克斯(Deepstroke)在中风分流器中容易获得一分钟的面部视频数据和音频数据,用于局部面部瘫痪检测和全球语音障碍分析。采用了转移学习来减少面部侵蚀偏见并提高普遍性。我们利用多模式的横向融合来结合低水平和高级特征,并为关节训练提供相互正则化。引入了新型的对抗训练以获得无身份和中风的特征。与实际急诊室患者进行的视频ADIO数据集进行的实验表明,与分类团队和ER医生相比,中风的表现要优于最先进的模型,并且取得更好的性能,比传统的敏感性高出10.94%,高7.37%的精度高出7.37%。当特异性对齐时,中风分类。同时,每个评估都可以在不到六分钟的时间内完成,这表明该框架的临床翻译潜力很大。
translated by 谷歌翻译
人工智能(AI)系统在接下来的几十年中有很大的希望可以改善医疗保健。具体而言,利用多个数据源和输入模式的AI系统有望成为一种可行的方法,可以在广泛的应用程序中提供更准确的结果和可部署的管道。在这项工作中,我们提出并评估一个统一的医学中的整体AI(HAIM)框架,以促进利用多模式输入的AI系统的生成和测试。我们的方法使用可通用的数据预处理和机器学习建模阶段,可以很容易地适应医疗保健环境中的研究和部署。我们通过训练和表征基于MIMIC-IV-MM的14,324个独立模型来评估我们的HAIM框架,该模型是一种多模式临床数据库(n = 34,537个样本),其中包含7,279个独特的住院和6,485名患者,涵盖了4个数据模态的所有可能输入组合(即,所有可能的输入组合)表格,时间序列,文本和图像),11个独特的数据源和12个预测任务。我们表明,该框架可以始终如一地生产出在各种医疗保健示范中超过相似的单源方法的模型(乘以6-33%),包括10种不同的胸部病理学诊断,以及休息时间和48小时的死亡率预测。我们还使用Shapley值量化了每种模式和数据源的贡献,这证明了数据类型重要性的异质性以及在不同医疗保健相关的任务中多模式输入的必要性。我们的整体医学AI(HAIM)框架的可推广性能和灵活性可以为未来的临床和运营医疗环境中的多模式预测系统提供有希望的途径。
translated by 谷歌翻译
A significant level of stigma and inequality exists in mental healthcare, especially in under-served populations, which spreads through collected data. When not properly accounted for, machine learning (ML) models learned from data can reinforce the structural biases already present in society. Here, we present a systematic study of bias in ML models designed to predict depression in four different case studies covering different countries and populations. We find that standard ML approaches show regularly biased behaviors. However, we show that standard mitigation techniques, and our own post-hoc method, can be effective in reducing the level of unfair bias. We provide practical recommendations to develop ML models for depression risk prediction with increased fairness and trust in the real world. No single best ML model for depression prediction provides equality of outcomes. This emphasizes the importance of analyzing fairness during model selection and transparent reporting about the impact of debiasing interventions.
translated by 谷歌翻译
公平性是一个标准,重点是评估不同人口组的算法性能,它引起了自然语言处理,推荐系统和面部识别的关注。由于医学图像样本中有很多人口统计学属性,因此了解公平的概念,熟悉不公平的缓解技术,评估算法的公平程度并认识到医疗图像分析(媒体)中的公平问题中的挑战很重要。在本文中,我们首先给出了公平性的全面和精确的定义,然后通过在媒体中引入当前使用的技术中使用的技术。之后,我们列出了包含人口统计属性的公共医疗图像数据集,以促进公平研究并总结有关媒体公平性的当前算法。为了帮助更好地理解公平性,并引起人们对媒体中与公平性有关的问题的关注,进行了实验,比较公平性和数据失衡之间的差异,验证各种媒体任务中不公平的存在,尤其是在分类,细分和检测以及评估不公平缓解算法的有效性。最后,我们以媒体公平性的机会和挑战得出结论。
translated by 谷歌翻译
医学中的机器学习利用了财富的医疗保健数据来提取知识,促进临床决策,最终改善护理。然而,在缺乏人口统计分集的数据集上培训的ML模型可以在适用于不足的人群时产生次优绩效(例如少数民族,社会经济地位较低),因此延续了健康差异。在这项研究中,我们评估了四种型分类,以预测高氯血症 - 一种经常由ICU人口中的侵袭性流体给药的条件 - 并将其在种族,性别和保险亚组中进行比较。我们观察到,除了基于实验室的患者的模型性能之外,还要添加社会决定因素特征。 40个模型 - 亚组中的40分,亚组测试产生了显着不同的AUC分数,提示在将ML模型应用于社会决定簇子组时的差异。我们敦促未来的研究人员设计主动调整潜在偏见的模型,并包括他们研究中的子组报告。
translated by 谷歌翻译
多模式融合方法旨在整合来自不同数据源的信息。与天然数据集不同,例如在视听应用中,样本由“配对”模式组成,医疗保健中的数据通常异步收集。因此,对于给定样品需要所有方式,对于临床任务而言并不现实,并且在训练过程中显着限制了数据集的大小。在本文中,我们提出了Medfuse,这是一种概念上简单但有前途的基于LSTM的融合模块,可以容纳Uni-Mododal和多模式输入。我们使用MIMIC-IV数据集中的临床时间序列数据以及Mimic-CXR中的相应的胸部X射线图像,评估了融合方法,并引入了院内死亡率预测和表型分类的新基准结果。与更复杂的多模式融合策略相比,MEDFUSE在完全配对的测试集上的差距很大。它在部分配对的测试集中还保持了强大的稳定性,其中包含带有缺少胸部X射线图像的样品。我们发布了我们的可重复性代码,并在将来对竞争模型进行评估。
translated by 谷歌翻译
COVID-19的大流行造成了毁灭性的经济和社会破坏,使全球医疗机构的资源紧张。这导致全国范围内呼吁模型预测Covid-19患者的住院和严重疾病,以告知有限医疗资源的分配。我们回应针对儿科人群的其中一种。为了应对这一挑战,我们使用电子健康记录研究了针对儿科人群的两项预测任务:1)预测哪些儿童更有可能住院,而2)在住院儿童中,哪些孩子更有可能出现严重的症状。我们通过新颖的机器学习模型MEDML应对国家儿科Covid-19数据挑战。 MEDML根据超过600万个医学概念的医学知识和倾向得分提取了最预测的特征,并通过图神经网络(GNN)结合了异质医学特征之间的功能间关系。我们使用来自国家队列协作(N3C)数据集的数据评估了143,605名患者的MEDML,并在143,605名患者的住院预测任务中评估了严重性预测任务的11,465名患者。我们还报告了详细的小组级和个人级特征的重要性分析,以评估模型的解释性。与最佳的基线机器学习模型相比,MEDML的AUROC得分高达7%,AUPRC得分高达14%,并且自大流行以来的所有九个国家地理区域以及所有三个月的跨度都表现良好。我们的跨学科研究团队开发了一种将临床领域知识纳入新型机器学习模型的框架的方法,该框架比当前最新的数据驱动的功能选择方法更具预测性和可解释。
translated by 谷歌翻译
住院患者的高血糖治疗对发病率和死亡率都有重大影响。这项研究使用了大型临床数据库来预测需要住院的糖尿病患者的需求,这可能会改善患者的安全性。但是,这些预测可能容易受到社会决定因素(例如种族,年龄和性别)造成的健康差异的影响。这些偏见必须在数据收集过程的早期,在进入系统之前就可以消除,并通过模型预测加强,从而导致模型决策的偏见。在本文中,我们提出了一条能够做出预测以及检测和减轻偏见的机器学习管道。该管道分析了临床数据,确定是否存在偏见,将其删除,然后做出预测。我们使用实验证明了模型预测中的分类准确性和公平性。结果表明,当我们在模型早期减轻偏见时,我们会得到更公平的预测。我们还发现,随着我们获得更好的公平性,我们牺牲了一定程度的准确性,这在先前的研究中也得到了验证。我们邀请研究界为确定可以通过本管道解决的其他因素做出贡献。
translated by 谷歌翻译
2型糖尿病(T2DM)的早期诊断对于及时的治疗干预措施和生活方式改变至关重要。随着医学成像数据在许多患者群体中变得更广泛可用,我们试图研究是否可以在表格学习分类器模型中利用图像衍生的表型数据来预测T2DM的发病率,而无需使用侵入性血液实验室测量。我们表明,使用图像衍生表型的神经网络和决策树模型都可以预测患者T2DM状态的召回评分高达87.6%。我们还提出了与“ Syntha1c编码器”相同的结构的新颖使用,这些结构能够输出模仿血液血红蛋白A1C经验实验室测量值的可解释值。最后,我们证明了T2DM风险预测模型对输入矢量成分中小扰动的敏感性可用于预测从以前看不见的患者人群中取样的协变量的性能。
translated by 谷歌翻译
眼睛的临床诊断是对多种数据模式进行的,包括标量临床标签,矢量化生物标志物,二维底面图像和三维光学相干性层析成像(OCT)扫描。临床从业者使用所有可用的数据模式来诊断和治疗糖尿病性视网膜病(DR)或糖尿病黄斑水肿(DME)等眼部疾病。在眼科医学领域启用机器学习算法的使用需要研究治疗期内所有相关数据之间的关系和相互作用。现有的数据集受到限制,因为它们既不提供数据,也没有考虑数据模式之间的显式关系建模。在本文中,我们介绍了用于研究以上限制的视觉眼睛语义(橄榄)数据集的眼科标签。这是第一个OCT和近IIR眼底数据集,其中包括临床标签,生物标记标签,疾病标签和时间序列的患者治疗信息,来自相关临床试验。该数据集由1268个近红外图像组成,每个图像至少具有49个10月扫描和16个生物标志物,以及4个临床标签和DR或DME的疾病诊断。总共有96张眼睛的数据在至少两年的时间内平均,每只眼睛平均治疗66周和7次注射。我们在医学图像分析中为橄榄数据集进行了橄榄数据集的实用性,并为核心和新兴机器学习范式提供了基准和具体研究方向。
translated by 谷歌翻译
背景:电子健康记录(EHRS)包含丰富的患者健康历史信息,这通常包括结构化和非结构化数据。已经有许多研究专注于从结构化数据中蒸馏有价值的信息,例如疾病代码,实验室测试结果和治疗方法。但是,依托结构化数据可能不足反映患者的综合信息,此类数据可能偶尔含有错误的记录。目的:随着机器学习(ML)和深度学习(DL)技术的最近进步,越来越多的研究通过纳入非结构化的自由文本数据,寻求获得更准确的结果。本文评论了使用多模式数据的研究,即结构化和非结构化数据的组合,从EHRS作为传统ML或DL模型的输入来解决目标任务。材料和方法:我们在电气和电子工程师(IEEE)数字图书馆(IEEE)数字图书馆,PubMed和Compution Machion(ACM)数字文章中搜索了与基于ML的多模式EHR研究相关的制品。结果与讨论:最后94项包括研究,我们专注于如何使用常规ML和DL技术合并和互动的数据来自不同方式的数据,以及如何在与EHR相关的任务中应用这些算法。此外,我们研究了这些融合方法的优点和局限,并表明了基于ML的多模式EHR研究的未来方向。
translated by 谷歌翻译
在过去几年中,在医疗保健中使用人工智能(AI)已成为一个非常活跃的研究领域。虽然在图像分类任务中取得了重大进展,但实际上只能部署一些AI方法。目前积极使用临床AI模型的主要障碍是这些模型的可信度。这些复杂模型更常见,是一种黑色盒子,其中产生了有希望的结果。然而,当仔细检查时,这些模型开始在决策期间揭示隐式偏差,例如检测种族并对民族群体和群体具有偏见。在我们正在进行的研究中,我们开发了一个两步的逆势脱叠方法,部分学习可以减少种族差异,同时保留目标任务的性能。该方法已经在两个独立的医学图像案例研究 - 胸X射线和乳房X光检查中进行了评估,并在保持目标性能的同时表现出偏差减少的承诺。
translated by 谷歌翻译
阿尔茨海默氏病(AD)是最常见的神经退行性疾病,具有最复杂的病原体之一,使有效且临床上可行的决策变得困难。这项研究的目的是开发一个新型的多模式深度学习框架,以帮助医疗专业人员进行AD诊断。我们提出了一个多模式的阿尔茨海默氏病诊断框架(MADDI),以准确检测成像,遗传和临床数据中的AD和轻度认知障碍(MCI)。 Maddi是新颖的,因为我们使用跨模式的注意力,它捕获了模态之间的相互作用 - 这种域中未探讨的方法。我们执行多级分类,这是一项艰巨的任务,考虑到MCI和AD之间的相似之处。我们与以前的最先进模型进行比较,评估注意力的重要性,并检查每种模式对模型性能的贡献。 Maddi在持有的测试集中对MCI,AD和控件进行了96.88%的精度分类。在检查不同注意力方案的贡献时,我们发现跨模式关注与自我注意力的组合表现出了最佳状态,并且模型中没有注意力层表现最差,而F1分数差异为7.9%。我们的实验强调了结构化临床数据的重要性,以帮助机器学习模型将其背景化和解释其余模式化。广泛的消融研究表明,未访问结构化临床信息的任何多模式混合物都遭受了明显的性能损失。这项研究证明了通过跨模式的注意组合多种输入方式的优点,以提供高度准确的AD诊断决策支持。
translated by 谷歌翻译
已经重新强调,使用AI用于临床决策可以放大健康差异。机器学习模型可以拾取患者的种族特性和临床结果之间的不希望的相关性。这种相关性通常存在于用于模型开发的(历史)数据中。疾病检测模型中报告偏差有所增加。除了来自所营业的人群的数据的稀缺之外,还讨论了如何编码这些偏差以及如何减少甚至去除不同性能的少数人。担心算法可以识别患者特征,例如生物学性别或种族身份,然后在进行预测时直接或间接地使用这些信息。但它仍然尚不清楚我们如何建立这些信息是否实际使用。本文旨在通过探索这些问题,探索这些问题,探讨了对机器学习模型的内部工作进行了直观的基于图像的疾病的疾病的方法。我们还调查如何解决性能差异并找到自动阈值选择,以实现有效且有问题的技术,导致模型具有跨子组的具有可比真实和误频率的模型。我们的调查结果要求进一步研究,以更好地了解性能差异的根本原因。
translated by 谷歌翻译
Covid-19流行病仍然有一个毁灭性的全球影响,并对世界各地努力努力的医疗系统带来了巨大的负担。鉴于资源有限,准确的患者三环和护理规划在对抗Covid-19的斗争中至关重要,并且在护理计划中的一个重要任务是确定患者是否应录取医院的重症监护单位(ICU)。通过对透明和值得信赖的ICU入学临床决策支持的推动,我们基于患者临床数据引入Covid-Net Clinical ICU,是ICU入学预测的神经网络。由透明信任的以信赖的方法驱动,拟议的Covid-Net临床ICU是使用来自医院Sirio-Libanes的临床数据集,包括1,925个Covid-19患者记录,并且能够预测Covid-19阳性患者要求ICU入场,准确性为96.9%,以便在持续流行下,为医院提供更好的护理计划。我们使用定量说明策略进行了系统级洞察发现,以研究不同临床特征的决策影响,并获得可操作的洞察,以提高预测性能。我们进一步利用了一套信任量化指标,以获得对Covid-Net临床ICU的可信度的更深入的见解。通过深入挖掘临床预测模型的时间和为何进行某些决策,我们可以发现决策中的关键因素,以获得关键的临床决策支持任务,如ICU准入预测,并确定可以信任临床预测模型的情况以获得更高的问责制。
translated by 谷歌翻译
随着数据驱动的系统越来越大规模部署,对历史上边缘化的群体的不公平和歧视结果引起了道德问题,这些群体在培训数据中的代表性不足。作为回应,围绕AI的公平和包容性的工作呼吁代表各个人口组的数据集。在本文中,我们对可访问性数据集中的年龄,性别和种族和种族的代表性进行了分析 - 数据集 - 来自拥有的数据集,这些数据集来自拥有的人。残疾和老年人 - 这可能在减轻包含AI注入的应用程序的偏见方面发挥重要作用。我们通过审查190个数据集的公开信息来检查由残疾人来源的数据集中的当前表示状态,我们称这些可访问性数据集为止。我们发现可访问性数据集代表不同的年龄,但具有性别和种族表示差距。此外,我们研究了人口统计学变量的敏感和复杂性质如何使分类变得困难和不一致(例如,性别,种族和种族),标记的来源通常未知。通过反思当前代表残疾数据贡献者的挑战和机会,我们希望我们的努力扩大了更多可能将边缘化社区纳入AI注入系统的可能性。
translated by 谷歌翻译