在确定性优化中,通常假定问题的所有参数都是固定和已知的。但是,实际上,某些参数可能是未知的先验参数,但可以从历史数据中估算。典型的预测 - 优化方法将预测和优化分为两个阶段。最近,端到端的预测到优化已成为有吸引力的替代方法。在这项工作中,我们介绍了PYEPO软件包,这是一个基于Pytorch的端到端预测,然后在Python中进行了优化的库。据我们所知,PYEPO(发音为“带有静音” n“”的“菠萝”)是线性和整数编程的第一个通用工具,具有预测的目标函数系数。它提供了两种基本算法:第一种基于Elmachtoub&Grigas(2021)的开创性工作的凸替代损失函数,第二个基于Vlastelica等人的可区分黑盒求解器方法。 (2019)。 PYEPO提供了一个简单的接口,用于定义新的优化问题,最先进的预测 - 优化训练算法,自定义神经网络体系结构的使用以及端到端方法与端到端方法与与端到端方法的比较两阶段的方法。 PYEPO使我们能够进行一系列全面的实验,以比较沿轴上的多种端到端和两阶段方法,例如预测准确性,决策质量和运行时间,例如最短路径,多个背包和旅行等问题销售人员问题。我们讨论了这些实验中的一些经验见解,这些见解可以指导未来的研究。 PYEPO及其文档可在https://github.com/khalil-research/pyepo上找到。
translated by 谷歌翻译
机器学习(ML)管道中的组合优化(CO)层是解决数据驱动决策任务的强大工具,但它们面临两个主要挑战。首先,CO问题的解通常是其客观参数的分段常数函数。鉴于通常使用随机梯度下降对ML管道进行训练,因此缺乏斜率信息是非常有害的。其次,标准ML损失在组合设置中不能很好地工作。越来越多的研究通过各种方法解决了这些挑战。不幸的是,缺乏维护良好的实现会减慢采用CO层的速度。在本文的基础上,我们对CO层介绍了一种概率的观点,该观点自然而然地是近似分化和结构化损失的构建。我们从文献中恢复了许多特殊情况的方法,我们也得出了新方法。基于这个统一的观点,我们提出了inferpopt.jl,一个开源的朱莉娅软件包,1)允许将任何具有线性物镜的Co Oracle转换为可区分的层,以及2)定义足够的损失以训练包含此类层的管道。我们的图书馆使用任意优化算法,并且与朱莉娅的ML生态系统完全兼容。我们使用视频游戏地图上的探索问题来证明其能力。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
在过去几年预测和优化的方法(Elmachtoub和Grigas 2021; Wilder,Dilkina和Tambe 2019)受到了不断的关注。这些问题具有预测机器学习(ML)模型的预测的设置,馈送到下游优化问题以进行决策。预测和优化方法建议培训ML模型,通常通过直接优化优化求解器所制作的决策质量。但是,预测和优化方法的一个主要瓶颈正在为每个时代的每个训练实例解决优化问题。为了解决这一挑战,Mulamba等。 (2021)通过缓存可行的解决方案提出噪声对比估计。在这项工作中,我们显示噪声对比估计可以被认为是学习对解决方案缓存进行排名的情况。我们还开发成对和列表排名损失函数,可以以封闭式形式区分,而无需解决优化问题。通过关于这些替代损失职能的培训,我们经验证明我们能够最大限度地减少预测的遗憾。
translated by 谷歌翻译
本文介绍了OptNet,该网络架构集成了优化问题(这里,专门以二次程序的形式),作为较大端到端可训练的深网络中的单个层。这些层在隐藏状态之间编码约束和复杂依赖性,传统的卷积和完全连接的层通常无法捕获。我们探索这种架构的基础:我们展示了如何使用敏感性分析,彼得优化和隐式差分的技术如何通过这些层和相对于层参数精确地区分;我们为这些层开发了一种高效的解算器,用于利用基于GPU的基于GPU的批处理在原始 - 双内部点法中解决,并且在求解的顶部几乎没有额外的成本提供了反向衰减梯度;我们突出了这些方法在几个问题中的应用。在一个值得注意的示例中,该方法学习仅在输入和输出游戏中播放Mini-sudoku(4x4),没有关于游戏规则的a-priori信息;这突出了OptNet比其他神经架构更好地学习硬限制的能力。
translated by 谷歌翻译
In this short technical note we propose a baseline for decision-aware learning for contextual linear optimization, which solves stochastic linear optimization when cost coefficients can be predicted based on context information. We propose a decision-aware version of predict-then-optimize. We reweigh the prediction error by the decision regret incurred by an (unweighted) pilot estimator of costs to obtain a decision-aware predictor, then optimize with cost predictions from the decision-aware predictor. This method can be motivated as a finite-difference, iterate-independent approximation of the gradients of previously proposed end-to-end learning algorithms; it is also consistent with previously suggested intuition for end-to-end learning. This baseline is computationally easy to implement with readily available reweighted prediction oracles and linear optimization, and can be implemented with convex optimization so long as the prediction error minimization is convex. Empirically, we demonstrate that this approach can lead to improvements over a "predict-then-optimize" framework for settings with misspecified models, and is competitive with other end-to-end approaches. Therefore, due to its simplicity and ease of use, we suggest it as a simple baseline for end-to-end and decision-aware learning.
translated by 谷歌翻译
预测+优化是一个常见的真实范式,在那里我们必须在解决优化问题之前预测问题参数。然而,培训预测模型的标准通常与下游优化问题的目标不一致。最近,已经提出了集中的预测方法,例如Spo +和直接优化,以填补这种差距。但是,它们不能直接处理许多真实目标所需的$最大$算子的软限制。本文提出了一种用于现实世界线性和半定义负二次编程问题的新型分析微弱的代理目标框架,具有软线和非负面的硬度约束。该框架给出了约束乘法器上的理论界限,并导出了关于预测参数的闭合形式解决方案,从而导出问题中的任何变量的梯度。我们在使用软限制扩展的三个应用程序中评估我们的方法:合成线性规划,产品组合优化和资源供应,表明我们的方法优于传统的双阶段方法和其他集中决定的方法。
translated by 谷歌翻译
在这项研究中,我们提出了一个深入的学习优化框架,以解决动态的混合企业计划。具体而言,我们开发了双向长期内存(LSTM)框架,可以及时向前和向后处理信息,以学习最佳解决方案,以解决顺序决策问题。我们展示了我们在预测单项电容批号问题(CLSP)的最佳决策方面的方法,其中二进制变量表示是否在一个时期内产生。由于问题的动态性质,可以将CLSP视为序列标记任务,在该任务中,复发性神经网络可以捕获问题的时间动力学。计算结果表明,我们的LSTM优化(LSTM-OPT)框架大大减少了基准CLSP问题的解决方案时间,而没有太大的可行性和最佳性。例如,对于240,000多个测试实例,在85 \%级别的预测平均将CPLEX溶液的时间减少了9倍,最佳差距小于0.05 \%\%和0.4 \%\%\%\%\%的不可行性。此外,使用较短的计划范围训练的模型可以成功预测具有更长计划范围的实例的最佳解决方案。对于最困难的数据集,LSTM在25 \%级别的LSTM预测将70 CPU小时的溶液时间降低至小于2 CPU分钟,最佳差距为0.8 \%,而没有任何不可行。 LSTM-OPT框架在解决方案质量和精确方法方面,诸如Logistic回归和随机森林之类的经典ML算法(例如($ \ ell $,s)和基于动态编程的不平等,解决方案时间的改进。我们的机器学习方法可能有益于解决类似于CLSP的顺序决策问题,CLSP需要重复,经常和快速地解决。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
translated by 谷歌翻译
通过边界估计可以显着简化求解约束优化问题(COP),即提供成本函数的紧密边界。通过使用由已知边界的数据组成的数据以及COMPS提取的特征来馈送监督机器学习(ML)模型,可以训练模型以估计新COP实例的边界。在本文中,我们首先概述了来自问题实例的约束编程(CP)的ML的现有知识体系。其次,我们介绍了应用于支持CP解算器的工具的边界估计框架。在该框架内,讨论并评估了不同的ML模型,并评估其对边界估计的适用性,并避免避免求解器找到最佳解决方案的不可行估计的对策。第三,我们在七个警察中提出了一种实验研究,与不同的CP溶剂。我们的结果表明,可以仅限于这些警察的近似最佳边界。这些估计的边界将客观域大小减少60-88%,可以帮助求解器在搜索期间提前找到近乎最佳解决方案。
translated by 谷歌翻译
许多实际优化问题涉及不确定的参数,这些参数具有概率分布,可以使用上下文特征信息来估算。与首先估计不确定参数的分布然后基于估计优化目标的标准方法相反,我们提出了一个\ textIt {集成条件估计 - 优化}(ICEO)框架,该框架估计了随机参数的潜在条件分布同时考虑优化问题的结构。我们将随机参数的条件分布与上下文特征之间的关系直接建模,然后以与下游优化问题对齐的目标估算概率模型。我们表明,我们的ICEO方法在适度的规律性条件下渐近一致,并以概括范围的形式提供有限的性能保证。在计算上,使用ICEO方法执行估计是一种非凸面且通常是非差异的优化问题。我们提出了一种通用方法,用于近似从估计的条件分布到通过可区分函数的最佳决策的潜在非差异映射,这极大地改善了应用于非凸问题的基于梯度的算法的性能。我们还提供了半代理案例中的多项式优化解决方案方法。还进行了数值实验,以显示我们在不同情况下的方法的经验成功,包括数据样本和模型不匹配。
translated by 谷歌翻译
许多现实生活中的优化问题通常包含一个或多个没有明确公式的约束或目标。但是,如果可用数据,这些数据可用于学习约束。清楚地看到了这种方法的好处,但是需要以结构化的方式进行此过程。因此,本文提供了一个使用约束学习(OCL)进行优化的框架,我们认为这将有助于正式化和指导从数据中学习的过程。该框架包括以下步骤:(i)设置概念优化模型,(ii)数据收集和预处理,(iii)选择和培训预测模型,(iv)解决优化模型以及(v)验证和验证和验证和验证改进优化模型。然后,我们根据该框架回顾了最近的OCL文献,并强调了当前的趋势以及未来研究的领域。
translated by 谷歌翻译
神经网络架构的最新进展允许凸优化问题的无缝集成作为端到端可训练神经网络中的可差异层。然而,将中型和大规模二次程序集成到深度神经网络架构中是具有挑战性的,因为通过内部点方法究竟求解了二次程序,在变量的数量中具有最差的立方复杂性。在本文中,我们介绍了一种基于乘法器(ADMM)的交替方向方法的替代网络层体系结构,其能够缩放到中等大量变量的问题。通过修改的固定点迭代的残差映射的隐式分化来执行向后区分。模拟结果证明了ADMM层的计算优势,用于中等缩放问题的速度大约比OptNet二次编程层更快的峰值。此外,与基于展开的展差或kKt最优性条件的隐含分化的标准方法相比,我们的新型反向传递例程是高效的,从内存和计算角度来看。我们与综合预测和优化范例中的组合优化的实例结束。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
自动化封路计优化(HPO)已经获得了很大的普及,并且是大多数自动化机器学习框架的重要成分。然而,设计HPO算法的过程仍然是一个不系统和手动的过程:确定了现有工作的限制,提出的改进是 - 即使是专家知识的指导 - 仍然是一定任意的。这很少允许对哪些算法分量的驾驶性能进行全面了解,并且承载忽略良好算法设计选择的风险。我们提出了一个原理的方法来实现应用于多倍性HPO(MF-HPO)的自动基准驱动算法设计的原则方法:首先,我们正式化包括的MF-HPO候选的丰富空间,但不限于普通的HPO算法,然后呈现可配置的框架覆盖此空间。要自动和系统地查找最佳候选者,我们遵循通过优化方法,并通过贝叶斯优化搜索算法候选的空间。我们挑战是否必须通过执行消融分析来挑战所发现的设计选择或可以通过更加天真和更简单的设计。我们观察到使用相对简单的配置,在某些方式中比建立的方法更简单,只要某些关键配置参数具有正确的值,就可以很好地执行得很好。
translated by 谷歌翻译
我们介绍了Julia库Diffopt.jl,以通过凸优化问题解决目标和/或约束中存在的任意参数来区分。该库建立在数学上的基础上,因此利用了丰富的求解器生态系统,并用跳跃等建模语言很好地组成。DIFFOPT提供了前向和反向分化模式,从而使多个用例从高参数优化到反向传播和灵敏度分析,桥接受约束优化和端到端可区分编程。
translated by 谷歌翻译
我们介绍了数据科学预测生命周期中各个阶段开发和采用自动化的技术和文化挑战的说明概述,从而将重点限制为使用结构化数据集的监督学习。此外,我们回顾了流行的开源Python工具,这些工具实施了针对自动化挑战的通用解决方案模式,并突出了我们认为进步仍然需要的差距。
translated by 谷歌翻译
我们提出了一种基于机器学习的新型方法来解决涉及大量独立关注者的二重性程序,作为一种特殊情况,其中包括两阶段随机编程。我们提出了一个优化模型,该模型明确考虑了追随者的采样子集,并利用机器学习模型来估计未采样关注者的客观值。与现有方法不同,我们将机器学习模型培训嵌入到优化问题中,这使我们能够采用无法使用领导者决策来表示的一般追随者功能。我们证明了由原始目标函数衡量的生成领导者决策的最佳差距,该目标函数考虑了整个追随者集。然后,我们开发追随者采样算法来收紧界限和一种表示追随者功能的表示方法,可以用作嵌入式机器学习模型的输入。使用骑自行车网络设计问题的合成实例,我们比较方法的计算性能与基线方法。我们的方法为追随者的目标价值观提供了更准确的预测,更重要的是,产生了更高质量的领导者决策。最后,我们对骑自行车基础设施计划进行了现实世界中的案例研究,我们采用方法来解决超过一百万关注者的网络设计问题。与当前的自行车网络扩展实践相比,我们的方法提出了有利的性能。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译