尽管已经提出了许多方法来增强对抗性扰动的可转移性,但这些方法是以启发式方式设计的,并且尚不清楚改善对抗性转移性的基本机制。本文总结了在统一视图中以十二个以前的可传递性提高方法共享的共同机制,即这些方法都减少了区域对抗性扰动之间的游戏理论相互作用。为此,我们专注于区域对抗扰动之间所有相互作用的攻击效用,我们首先发现并证明了对抗传递性与相互作用的攻击效用之间的负相关性。基于这一发现,我们从理论上证明并从经验上验证了十二种以前的可传递性提高方法均减少了区域对抗扰动之间的相互作用。更重要的是,我们将相互作用的减少视为增强对抗性转移性的基本原因。此外,我们设计了交互损失,以直接惩罚攻击过程中区域对抗扰动之间的相互作用。实验结果表明,相互作用损失显着提高了对抗扰动的转移性。
translated by 谷歌翻译
本文提供了一个统一的观点来解释不同的逆势攻击和防御方法,即DNN的输入变量之间的多阶交互的视图。根据多阶互动,我们发现对抗性攻击主要影响愚弄DNN的高阶相互作用。此外,我们发现前列培训的DNN的鲁棒性来自特定于类别的低阶交互。我们的研究结果提供了统一对抗的扰动和鲁棒性的潜在方法,可以以原则方式解释现有的防御方法。此外,我们的调查结果还修订了先前的不准确了解对抗普遍学习特征的偏差。
translated by 谷歌翻译
本文提供了统一的观点来解释不同的对抗攻击和防御方法,\ emph {i.e.} DNN的输入变量之间的多阶交互的视图。根据多阶互动,我们发现对抗性攻击主要影响愚弄DNN的高阶相互作用。此外,我们发现前列培训的DNN的鲁棒性来自特定于类别的低阶交互。我们的研究结果提供了统一对抗的扰动和鲁棒性的潜在方法,可以以原则方式解释现有的防御方法。此外,我们的调查结果还修订了先前的不准确了解对抗普遍学习特征的偏差。
translated by 谷歌翻译
本文探讨了深度神经网络(DNN)的特征表示的瓶颈,从DNN中编码的输入变量之间的相互作用的复杂性的角度来看。为此,我们专注于输入变量之间的多阶交互,其中顺序表示交互的复杂性。我们发现DNN更有可能编码过于简单的相互作用和过于复杂的相互作用,但通常无法学习中间复杂性的相互作用。这种现象被不同的DNN广泛共享,用于不同的任务。这种现象表明了DNN和人类之间的认知差距,我们称之为瓶颈。理论上,理论上证明了代表瓶颈的潜在原因。此外,我们提出了鼓励/惩罚特定复杂性的相互作用的损失,并分析不同复杂性相互作用的表示能力。
translated by 谷歌翻译
近年来,随着神经网络的快速发展,深入学习模式的安全性越来越突出,这易于对抗性示例。几乎所有现有的基于梯度的攻击方法使用生成中的符号功能来满足$ l_ \ idty $ norm的扰动预算要求。然而,我们发现,由于它修改了精确梯度方向,因此可以对生成对抗示例的符号功能可能是不正确的。我们建议去除符号功能,并直接利用精确的梯度方向,具有缩放因子,以产生对抗扰动,即使扰动较少的扰动例子也提高了对抗性示例的攻击成功率。此外,考虑到最佳缩放因子在不同的图像上变化,我们提出了一种自适应缩放因子发生器,为每个图像寻求适当的缩放因子,这避免了手动搜索缩放因子的计算成本。我们的方法可以与几乎所有现有的基于梯度的攻击方法集成,以进一步提高攻击成功率。在CIFAR10和Imagenet数据集上的广泛实验表明,我们的方法表现出更高的可转移性和优于最先进的方法。
translated by 谷歌翻译
本文的目的是理论上分析具有relu层的分段线性DNN中编码的特征转换的复杂性。我们建议指标根据信息理论衡量转换的三种复杂性。我们进一步发现并证明了转换的复杂性和分离之间的密切相关性。根据提议的指标,我们分析了训练过程中转换复杂性变化的两个典型现象,并探索DNN复杂性的上限。所提出的指标也可以用作学习具有最小复杂性的DNN的损失,这也控制DNN的过度拟合水平并影响对抗性的鲁棒性,对抗性转移性和知识一致性。全面的比较研究为了解DNN提供了新的观点。
translated by 谷歌翻译
对抗性可转移性是一种有趣的性质 - 针对一个模型制作的对抗性扰动也是对另一个模型有效的,而这些模型来自不同的模型家庭或培训过程。为了更好地保护ML系统免受对抗性攻击,提出了几个问题:对抗性转移性的充分条件是什么,以及如何绑定它?有没有办法降低对抗的转移性,以改善合奏ML模型的鲁棒性?为了回答这些问题,在这项工作中,我们首先在理论上分析和概述了模型之间的对抗性可转移的充分条件;然后提出一种实用的算法,以减少集合内基础模型之间的可转换,以提高其鲁棒性。我们的理论分析表明,只有促进基础模型梯度之间的正交性不足以确保低可转移性;与此同时,模型平滑度是控制可转移性的重要因素。我们还在某些条件下提供了对抗性可转移性的下界和上限。灵感来自我们的理论分析,我们提出了一种有效的可转让性,减少了平滑(TRS)集合培训策略,以通过实施基础模型之间的梯度正交性和模型平滑度来培训具有低可转换性的强大集成。我们对TRS进行了广泛的实验,并与6个最先进的集合基线进行比较,防止不同数据集的8个白箱攻击,表明所提出的TRS显着优于所有基线。
translated by 谷歌翻译
本文介绍了一种解释在深神经网络(DNN)中向前传播期间每个输入变量的信息如何逐渐丢弃的方法,该信息提供了解释DNN的新观点。我们定义了两种类型的基于熵的指标,即(1)向前传播中使用的像素范围信息的丢弃,以及(2)输入重建的不确定性,以从两个角度测量特定层所包含的输入信息。与以前的归因指标不同,所提出的指标可确保不同DNN不同层之间比较的公平性。我们可以使用这些指标来分析DNN中信息处理的效率,后者与DNN的性能表现出牢固的联系。我们以像素方式分析信息丢弃的信息,这与信息瓶颈理论测量特征信息W.R.T.不同。样本分布。实验显示了我们指标在分析经典DNN和解释现有深度学习技术方面的有效性。
translated by 谷歌翻译
本文提出了分层和符号和或图形(AOG),客观地解释由训练有素的深层模型进行推理的内部逻辑。我们首先定义博弈论中解释器模型的客观性,我们开发了深层模型编码的逻辑和逻辑的严格表示。AOG解释者的客观性和可信度在理论上和实验验证。此外,我们提出了几种技术来提升解释的简明。
translated by 谷歌翻译
Deep learning methods have gained increased attention in various applications due to their outstanding performance. For exploring how this high performance relates to the proper use of data artifacts and the accurate problem formulation of a given task, interpretation models have become a crucial component in developing deep learning-based systems. Interpretation models enable the understanding of the inner workings of deep learning models and offer a sense of security in detecting the misuse of artifacts in the input data. Similar to prediction models, interpretation models are also susceptible to adversarial inputs. This work introduces two attacks, AdvEdge and AdvEdge$^{+}$, that deceive both the target deep learning model and the coupled interpretation model. We assess the effectiveness of proposed attacks against two deep learning model architectures coupled with four interpretation models that represent different categories of interpretation models. Our experiments include the attack implementation using various attack frameworks. We also explore the potential countermeasures against such attacks. Our analysis shows the effectiveness of our attacks in terms of deceiving the deep learning models and their interpreters, and highlights insights to improve and circumvent the attacks.
translated by 谷歌翻译
本文提出了一种可视化DNN编码的中间层视觉模式的辨别力的方法。具体而言,我们可视化(1)DNN在训练过程中如何逐渐学习各个中间层中的区域视觉模式,(2)DNN使用低层中的非辨别模式的效果来构建中/高层中的剥离图案通过前向传播。基于我们的可视化方法,我们可以量化DNN学习的知识点(即,判别视觉模式的数量)来评估DNN的表示能力。此外,该方法还提供了新的洞察现有的深度学习技术的信号处理行为,例如对抗攻击和知识蒸馏。
translated by 谷歌翻译
在过去的几年中,黑盒对抗攻击设计了看不见的神经网络(NNS)的对抗性示例(NNS)受到了极大的关注。尽管文献中已经提出了几种成功的黑盒攻击方案,但推动黑盒对抗示例的可转移性的基本因素仍然缺乏透彻的理解。在本文中,我们旨在证明用于在攻击方案转移到未观察到的NN分类器中的替代分类器的概括属性的作用。为此,我们应用了Max-Min对抗示例游戏框架,并显示替代NN的概括属性在Black-Box攻击方案的成功中的重要性,以应用于不同的NN分类器。我们证明了训练和测试样品的攻击可传递速率之间的差异的理论概括界。我们的界限表明,具有更好概括行为的替代品可能会导致更容易转移的对抗性例子。此外,我们表明基于标准操作员规范的正则化方法可以提高设计的对抗示例的可传递性。我们通过执行几个数值实验来支持我们的理论结果,该实验显示了替代网络在生成可转移的对抗示例中的作用。我们的经验结果表明,Lipschitz正则化方法在改善对抗性示例的转移性方面的功能。
translated by 谷歌翻译
在对抗性鲁棒性的背景下,单个模型通常没有足够的力量来防御所有可能的对抗攻击,因此具有亚最佳的鲁棒性。因此,新兴的工作重点是学习神经网络的合奏,以防止对抗性攻击。在这项工作中,我们采取了一种有原则的方法来建立强大的合奏。我们从增强保证金的角度观察了这个问题,并开发了一种学习最大利润的合奏的算法。通过在基准数据集上进行广泛的经验评估,我们表明我们的算法不仅超过了现有的结合技术,而且还以端到端方式训练的大型模型。我们工作的一个重要副产品是边缘最大化的跨肠损失(MCE)损失,这是标准跨侧面(CE)损失的更好替代方法。从经验上讲,我们表明,用MCE损失取代最先进的对抗训练技术中的CE损失会导致显着提高性能。
translated by 谷歌翻译
机器学习(ML)鲁棒性和域的概括从根本上相关:它们基本上涉及对抗和自然设置下的数据分布变化。一方面,最近的研究表明,更健壮的(受对抗训练)模型更为普遍。另一方面,缺乏对其基本联系的理论理解。在本文中,我们探讨了考虑到不同因素(例如规范正规化和数据增强)(DA)等不同因素的正则化和域转移性之间的关系。我们提出了一个一般的理论框架,证明涉及模型函数类正则化的因素是相对域可传递性的足够条件。我们的分析意味着``鲁棒性''既不必需,也不足以使其可转移性;而正规化是理解域可转移性的更基本的观点。然后,我们讨论流行的DA协议(包括对抗性培训),并显示何时可以将其视为功能在某些条件下进行类正则化并因此改善了概括。我们进行了广泛的实验以验证我们的理论发现,并显示了几个反例,其中鲁棒性和概括在不同的数据集上呈负相关。
translated by 谷歌翻译
成功的深度学习模型往往涉及培训具有比训练样本数量更多的参数的神经网络架构。近年来已经广泛研究了这种超分子化的模型,并且通过双下降现象和通过优化景观的结构特性,从统计的角度和计算视角都建立了过分统计化的优点。尽管在过上分层的制度中深入学习架构的显着成功,但也众所周知,这些模型对其投入中的小对抗扰动感到高度脆弱。即使在普遍培训的情况下,它们在扰动输入(鲁棒泛化)上的性能也会比良性输入(标准概括)的最佳可达到的性能更糟糕。因此,必须了解如何从根本上影响稳健性的情况下如何影响鲁棒性。在本文中,我们将通过专注于随机特征回归模型(具有随机第一层权重的两层神经网络)来提供超分度化对鲁棒性的作用的精确表征。我们考虑一个制度,其中样本量,输入维度和参数的数量彼此成比例地生长,并且当模型发生前列地训练时,可以为鲁棒泛化误差导出渐近精确的公式。我们的发达理论揭示了过分统计化对鲁棒性的非竞争效果,表明对于普遍训练的随机特征模型,高度公正化可能会损害鲁棒泛化。
translated by 谷歌翻译
尽管深度神经网络(DNN)在感知和控制任务中表现出令人难以置信的性能,但几个值得信赖的问题仍然是开放的。其中一个最讨论的主题是存在对抗扰动的存在,它在能够量化给定输入的稳健性的可提供技术上开辟了一个有趣的研究线。在这方面,来自分类边界的输入的欧几里德距离表示良好被证明的鲁棒性评估,作为最小的经济适用的逆势扰动。不幸的是,由于NN的非凸性质,计算如此距离非常复杂。尽管已经提出了几种方法来解决这个问题,但据我们所知,没有提出可证明的结果来估计和绑定承诺的错误。本文通过提出两个轻量级策略来寻找最小的对抗扰动来解决这个问题。不同于现有技术,所提出的方法允许与理论上的近似距离的误差估计理论配制。最后,据报道,据报道了大量实验来评估算法的性能并支持理论发现。所获得的结果表明,该策略近似于靠近分类边界的样品的理论距离,导致可提供对任何对抗攻击的鲁棒性保障。
translated by 谷歌翻译
最近的研究表明,深度神经网络(DNNS)极易受到精心设计的对抗例子的影响。对那些对抗性例子的对抗性学习已被证明是防御这种攻击的最有效方法之一。目前,大多数现有的对抗示例生成方法基于一阶梯度,这几乎无法进一步改善模型的鲁棒性,尤其是在面对二阶对抗攻击时。与一阶梯度相比,二阶梯度提供了相对于自然示例的损失格局的更准确近似。受此启发的启发,我们的工作制作了二阶的对抗示例,并使用它们来训练DNNS。然而,二阶优化涉及Hessian Inverse的耗时计算。我们通过将问题转换为Krylov子空间中的优化,提出了一种近似方法,该方法显着降低了计算复杂性以加快训练过程。在矿工和CIFAR-10数据集上进行的广泛实验表明,我们使用二阶对抗示例的对抗性学习优于其他FISRT-阶方法,这可以改善针对广泛攻击的模型稳健性。
translated by 谷歌翻译
We develop new theoretical results on matrix perturbation to shed light on the impact of architecture on the performance of a deep network. In particular, we explain analytically what deep learning practitioners have long observed empirically: the parameters of some deep architectures (e.g., residual networks, ResNets, and Dense networks, DenseNets) are easier to optimize than others (e.g., convolutional networks, ConvNets). Building on our earlier work connecting deep networks with continuous piecewise-affine splines, we develop an exact local linear representation of a deep network layer for a family of modern deep networks that includes ConvNets at one end of a spectrum and ResNets, DenseNets, and other networks with skip connections at the other. For regression and classification tasks that optimize the squared-error loss, we show that the optimization loss surface of a modern deep network is piecewise quadratic in the parameters, with local shape governed by the singular values of a matrix that is a function of the local linear representation. We develop new perturbation results for how the singular values of matrices of this sort behave as we add a fraction of the identity and multiply by certain diagonal matrices. A direct application of our perturbation results explains analytically why a network with skip connections (such as a ResNet or DenseNet) is easier to optimize than a ConvNet: thanks to its more stable singular values and smaller condition number, the local loss surface of such a network is less erratic, less eccentric, and features local minima that are more accommodating to gradient-based optimization. Our results also shed new light on the impact of different nonlinear activation functions on a deep network's singular values, regardless of its architecture.
translated by 谷歌翻译
尽管使用对抗性训练捍卫深度学习模型免受对抗性扰动的经验成功,但到目前为止,仍然不清楚对抗性扰动的存在背后的原则是什么,而对抗性培训对神经网络进行了什么来消除它们。在本文中,我们提出了一个称为特征纯化的原则,在其中,我们表明存在对抗性示例的原因之一是在神经网络的训练过程中,在隐藏的重量中积累了某些小型密集混合物;更重要的是,对抗训练的目标之一是去除此类混合物以净化隐藏的重量。我们介绍了CIFAR-10数据集上的两个实验,以说明这一原理,并且一个理论上的结果证明,对于某些自然分类任务,使用随机初始初始化的梯度下降训练具有RELU激活的两层神经网络确实满足了这一原理。从技术上讲,我们给出了我们最大程度的了解,第一个结果证明,以下两个可以同时保持使用RELU激活的神经网络。 (1)对原始数据的训练确实对某些半径的小对抗扰动确实不舒适。 (2)即使使用经验性扰动算法(例如FGM),实际上也可以证明对对抗相同半径的任何扰动也可以证明具有强大的良好性。最后,我们还证明了复杂性的下限,表明该网络的低复杂性模型,例如线性分类器,低度多项式或什至是神经切线核,无论使用哪种算法,都无法防御相同半径的扰动训练他们。
translated by 谷歌翻译
研究神经网络中重量扰动的敏感性及其对模型性能的影响,包括泛化和鲁棒性,是一种积极的研究主题,因为它对模型压缩,泛化差距评估和对抗攻击等诸如模型压缩,泛化差距评估和对抗性攻击的广泛机器学习任务。在本文中,我们在重量扰动下的鲁棒性方面提供了前馈神经网络的第一积分研究和分析及其在体重扰动下的泛化行为。我们进一步设计了一种新的理论驱动损失功能,用于培训互动和强大的神经网络免受重量扰动。进行实证实验以验证我们的理论分析。我们的结果提供了基本洞察,以表征神经网络免受重量扰动的泛化和鲁棒性。
translated by 谷歌翻译