从理论上讲,通过引入蛋白质3D结构信息,可以改善化合物蛋白结合亲和力(CPA)中计算模型的准确性。但是,由于缺乏有效编码信息蛋白质特征的有效方法,这些模型中的大多数仍然存在低精度。主要的挑战是如何结合多模式信息,例如蛋白质的残基序列,残基原子坐标和扭转角。为了解决这个问题,我们开发了快速的进化关注和彻底的图形神经网络(featnn),以促进蛋白质3D结构信息的应用以预测CPA。具体而言,我们建立了一种新型的端到端结构,以共同嵌入扭转矩阵,离散距离矩阵以及蛋白质和提取具有深图卷积层的复合特征的序列信息。此外,引入了一种新的成对映射注意机制,以全面了解蛋白质和化合物之间的潜在相互作用信息。在CPA预测中,R2系数升高约21.33%,在CPA预测中的各种最新基准都大大优于各种最新基线。因此,壮举为高度准确的CPA预测提供了出色的方法,并促进了候选药物的高通量虚拟筛查。
translated by 谷歌翻译
Applying deep learning concepts from image detection and graph theory has greatly advanced protein-ligand binding affinity prediction, a challenge with enormous ramifications for both drug discovery and protein engineering. We build upon these advances by designing a novel deep learning architecture consisting of a 3-dimensional convolutional neural network utilizing channel-wise attention and two graph convolutional networks utilizing attention-based aggregation of node features. HAC-Net (Hybrid Attention-Based Convolutional Neural Network) obtains state-of-the-art results on the PDBbind v.2016 core set, the most widely recognized benchmark in the field. We extensively assess the generalizability of our model using multiple train-test splits, each of which maximizes differences between either protein structures, protein sequences, or ligand extended-connectivity fingerprints. Furthermore, we perform 10-fold cross-validation with a similarity cutoff between SMILES strings of ligands in the training and test sets, and also evaluate the performance of HAC-Net on lower-quality data. We envision that this model can be extended to a broad range of supervised learning problems related to structure-based biomolecular property prediction. All of our software is available as open source at https://github.com/gregory-kyro/HAC-Net/.
translated by 谷歌翻译
作为药物开发的必要过程,找到可以选择性地与特定蛋白质结合的药物化合物是高度挑战性和昂贵的。代表药物目标相互作用(DTI)强度的药物目标亲和力(DTA)在过去十年中在DTI预测任务中发挥了重要作用。尽管已将深度学习应用于与DTA相关的研究,但现有的解决方案忽略了分子亚结构之间的基本相关性,在分子代表学习药物化合物分子/蛋白质靶标之间。此外,传统方法缺乏DTA预测过程的解释性。这导致缺少分子间相互作用的特征信息,从而影响预测性能。因此,本文提出了一种使用交互式学习和自动编码器机制的DTA预测方法。提出的模型增强了通过药物/蛋白质分子表示学习模块捕获单个分子序列的特征信息的相应能力,并通过交互式信息学习模块补充了分子序列对之间的信息相互作用。 DTA值预测模块融合了药物目标对相互作用信息,以输出DTA的预测值。此外,从理论上讲,本文提出的方法最大化了DTA预测模型联合分布的证据下限(ELBO),从而增强了实际值和预测值之间概率分布的一致性。实验结果证实了相互变压器 - 药物目标亲和力(MT-DTA)的性能比其他比较方法更好。
translated by 谷歌翻译
最近,基于深度神经网络(DNN)的药物 - 目标相互作用(DTI)模型以高精度突出显示,具有实惠的计算成本。然而,模型在硅药物发现的实践中仍然是一个具有挑战性的问题。我们提出了两项​​关键策略,以提高DTI模型的概括。首先是通过用神经网络参数化的物理通知方程来预测原子原子对相互作用,并提供蛋白质 - 配体复合物作为其总和的总结合亲和力。通过增强更广泛的绑定姿势和配体来培训数据,我们进一步改善了模型泛化。我们验证了我们的模型,PIGNET,在评分职能(CASF)2016的比较评估中,展示了比以前的方法更优于对接和筛选力。我们的物理信息策略还通过可视化配体副结构的贡献来解释预测的亲和力,为进一步配体优化提供了见解。
translated by 谷歌翻译
预测药物目标相互作用是药物发现的关键。最近基于深度学习的方法显示出令人鼓舞的表现,但仍有两个挑战:(i)如何明确建模并学习药物与目标之间的局部互动,以更好地预测和解释; (ii)如何从不同分布的新型药物目标对上概括预测性能。在这项工作中,我们提出了Dugban,这是一个深层双线性注意网络(BAN)框架,并适应了域的适应性,以明确学习药物与目标之间的配对局部相互作用,并适应了分布数据外的数据。 Dugban在药物分子图和靶蛋白序列上进行预测的作品,有条件结构域对抗性学习,以使跨不同分布的学习相互作用表示,以更好地对新型药物目标对进行更好的概括。在内域和跨域设置下,在三个基准数据集上进行的实验表明,对于五个最先进的基准,Dugban取得了最佳的总体表现。此外,可视化学习的双线性注意图图提供了可解释的见解,从预测结果中提供了可解释的见解。
translated by 谷歌翻译
准确的蛋白质结合亲和力预测在药物设计和许多其他分子识别问题中至关重要。尽管基于机器学习技术的亲和力预测取得了许多进步,但由于蛋白质 - 配体结合取决于原子和分子的动力学,它们仍然受到限制。为此,我们策划了一个包含3,218个动态蛋白质配合物的MD数据集,并进一步开发了DynaFormer,这是一个基于图的深度学习框架。 DynaFormer可以通过考虑相互作用的各种几何特征来完全捕获动态结合规则。我们的方法显示出优于迄今报告的方法。此外,我们通过将模型与基于结构的对接整合在一起,对热休克蛋白90(HSP90)进行了虚拟筛选。我们对其他基线进行了基准测试,表明我们的方法可以鉴定具有最高实验效力的分子。我们预计大规模的MD数据集和机器学习模型将形成新的协同作用,为加速药物发现和优化提供新的途径。
translated by 谷歌翻译
蛋白质 - 配体相互作用(PLIS)是生化研究的基础,其鉴定对于估计合理治疗设计的生物物理和生化特性至关重要。目前,这些特性的实验表征是最准确的方法,然而,这是非常耗时和劳动密集型的。在这种情况下已经开发了许多计算方法,但大多数现有PLI预测大量取决于2D蛋白质序列数据。在这里,我们提出了一种新颖的并行图形神经网络(GNN),以集成PLI预测的知识表示和推理,以便通过专家知识引导的深度学习,并通过3D结构数据通知。我们开发了两个不同的GNN架构,GNNF是采用不同特种的基础实现,以增强域名认识,而GNNP是一种新颖的实现,可以预测未经分子间相互作用的先验知识。综合评价证明,GNN可以成功地捕获配体和蛋白质3D结构之间的二元相互作用,对于GNNF的测试精度和0.958,用于预测蛋白质 - 配体络合物的活性。这些模型进一步适用于回归任务以预测实验结合亲和力,PIC50对于药物效力和功效至关重要。我们在实验亲和力上达到0.66和0.65的Pearson相关系数,分别在PIC50和GNNP上进行0.50和0.51,优于基于2D序列的模型。我们的方法可以作为可解释和解释的人工智能(AI)工具,用于预测活动,效力和铅候选的生物物理性质。为此,我们通过筛选大型复合库并将我们的预测与实验测量数据进行比较来展示GNNP对SARS-COV-2蛋白靶标的实用性。
translated by 谷歌翻译
用于预测蛋白质之间的界面触点的计算方法对于药物发现,因此可以显着地推进替代方法的准确性,例如蛋白质 - 蛋白质对接,蛋白质功能分析工具和其他用于蛋白质生物信息学的计算方法。在这项工作中,我们介绍了几何变压器,一种用于旋转的新型几何不变性的曲线图变压器,用于旋转和平移 - 不变的蛋白质接口接触预测,包装在膨胀的端到端预测管道内。 Deepinteract预测伴侣特异性蛋白质界面触点(即,蛋白质残留物 - 残留物接触)给出了两种蛋白质的3D三级结构作为输入。在严格的基准测试中,深入的蛋白质复杂目标来自第13和第14次CASP-CAPRI实验以及对接基准5,实现14%和1.1%顶部L / 5精度(L:蛋白质单位的长度) , 分别。在这样做的情况下,使用几何变压器作为其基于图形的骨干,除了与深度兼容的其他图形的神经网络骨架之外,还优于接口接触预测的现有方法,从而验证了几何变压器学习丰富关系的有效性用于3D蛋白质结构下游任务的-Geometric特征。
translated by 谷歌翻译
我们考虑对具有3D结构的蛋白质的代表性学习。我们基于蛋白质结构构建3D图并开发图形网络以学习其表示形式。根据我们希望捕获的细节级别,可以在不同级别计算蛋白质表示,\ emph {e.g。},氨基酸,骨干或全原子水平。重要的是,不同级别之间存在层次关系。在这项工作中,我们建议开发一个新型的层次图网络(称为pronet)来捕获关系。我们的pronet非常灵活,可用于计算不同水平粒度的蛋白质表示。我们表明,鉴于完整的基本3D图网络,我们的PRONET表示在所有级别上也已完成。为了关闭循环,我们开发了一个完整有效的3D图网络,以用作基本模型,从而使我们的pronet完成。我们对多个下游任务进行实验。结果表明,PRONET优于大多数数据集上的最新方法。此外,结果表明,不同的下游任务可能需要不同级别的表示。我们的代码可作为DIG库的一部分(\ url {https://github.com/divelab/dig})。
translated by 谷歌翻译
在三维分子结构上运行的计算方法有可能解决生物学和化学的重要问题。特别地,深度神经网络的重视,但它们在生物分子结构域中的广泛采用受到缺乏系统性能基准或统一工具包的限制,用于与分子数据相互作用。为了解决这个问题,我们呈现Atom3D,这是一个新颖的和现有的基准数据集的集合,跨越几个密钥的生物分子。我们为这些任务中的每一个实施多种三维分子学习方法,并表明它们始终如一地提高了基于单维和二维表示的方法的性能。结构的具体选择对于性能至关重要,具有涉及复杂几何形状的任务的三维卷积网络,在需要详细位置信息的系统中表现出良好的图形网络,以及最近开发的设备越多的网络显示出显着承诺。我们的结果表明,许多分子问题符合三维分子学习的增益,并且有可能改善许多仍然过分曝光的任务。为了降低进入并促进现场进一步发展的障碍,我们还提供了一套全面的DataSet处理,模型培训和在我们的开源ATOM3D Python包中的评估工具套件。所有数据集都可以从https://www.atom3d.ai下载。
translated by 谷歌翻译
Geometric deep learning has recently achieved great success in non-Euclidean domains, and learning on 3D structures of large biomolecules is emerging as a distinct research area. However, its efficacy is largely constrained due to the limited quantity of structural data. Meanwhile, protein language models trained on substantial 1D sequences have shown burgeoning capabilities with scale in a broad range of applications. Nevertheless, no preceding studies consider combining these different protein modalities to promote the representation power of geometric neural networks. To address this gap, we make the foremost step to integrate the knowledge learned by well-trained protein language models into several state-of-the-art geometric networks. Experiments are evaluated on a variety of protein representation learning benchmarks, including protein-protein interface prediction, model quality assessment, protein-protein rigid-body docking, and binding affinity prediction, leading to an overall improvement of 20% over baselines and the new state-of-the-art performance. Strong evidence indicates that the incorporation of protein language models' knowledge enhances geometric networks' capacity by a significant margin and can be generalized to complex tasks.
translated by 谷歌翻译
We consider the prediction of interfaces between proteins, a challenging problem with important applications in drug discovery and design, and examine the performance of existing and newly proposed spatial graph convolution operators for this task. By performing convolution over a local neighborhood of a node of interest, we are able to stack multiple layers of convolution and learn effective latent representations that integrate information across the graph that represent the three dimensional structure of a protein of interest. An architecture that combines the learned features across pairs of proteins is then used to classify pairs of amino acid residues as part of an interface or not. In our experiments, several graph convolution operators yielded accuracy that is better than the state-of-the-art SVM method in this task. † denotes equal contribution 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
translated by 谷歌翻译
由于肿瘤的异质性,在个性化的基础上预测抗癌药物的临床结局在癌症治疗中具有挑战性。已经采取了传统的计算努力来建模药物反应对通过其分子概况描绘的单个样品的影响,但由于OMICS数据的高维度而发生过度拟合,因此阻碍了临床应用的模型。最近的研究表明,深度学习是通过学习药物和样品之间的学习对准模式来建立药物反应模型的一种有前途的方法。但是,现有研究采用了简单的特征融合策略,仅考虑了整个药物特征,同时忽略了在对齐药物和基因时可能起着至关重要的作用的亚基信息。特此在本文中,我们提出了TCR(基于变压器的癌症药物反应网络),以预测抗癌药物反应。通过利用注意机制,TCR能够在我们的研究中有效地学习药物原子/子结构和分子特征之间的相互作用。此外,设计了双重损耗函数和交叉抽样策略,以提高TCR的预测能力。我们表明,TCR在所有评估矩阵上(一些具有显着改进)的各种数据分裂策略下优于所有其他方法。广泛的实验表明,TCR在独立的体外实验和体内实际患者数据上显示出显着提高的概括能力。我们的研究强调了TCR的预测能力及其对癌症药物再利用和精度肿瘤治疗的潜在价值。
translated by 谷歌翻译
阐明并准确预测分子的吸毒性和生物活性在药物设计和发现中起关键作用,并且仍然是一个开放的挑战。最近,图神经网络(GNN)在基于图的分子属性预测方面取得了显着进步。但是,当前基于图的深度学习方法忽略了分子的分层信息以及特征通道之间的关系。在这项研究中,我们提出了一个精心设计的分层信息图神经网络框架(称为hignn),用于通过利用分子图和化学合成的可见的无限元素片段来预测分子特性。此外,首先在Hignn体系结构中设计了一个插件功能的注意块,以适应消息传递阶段后自适应重新校准原子特征。广泛的实验表明,Hignn在许多具有挑战性的药物发现相关基准数据集上实现了最先进的预测性能。此外,我们设计了一种分子碎片的相似性机制,以全面研究Hignn模型在子图水平上的解释性,表明Hignn作为强大的深度学习工具可以帮助化学家和药剂师识别出设计更好分子的关键分子,以设计更好的分子,以设计出所需的更好分子。属性或功能。源代码可在https://github.com/idruglab/hignn上公开获得。
translated by 谷歌翻译
蛋白质RNA相互作用对各种细胞活性至关重要。已经开发出实验和计算技术来研究相互作用。由于先前数据库的限制,尤其是缺乏蛋白质结构数据,大多数现有的计算方法严重依赖于序列数据,只有一小部分使用结构信息。最近,alphafold彻底改变了整个蛋白质和生物领域。可预应学,在即将到来的年份,也将显着促进蛋白质-RNA相互作用预测。在这项工作中,我们对该字段进行了彻底的审查,调查绑定站点和绑定偏好预测问题,并覆盖常用的数据集,功能和模型。我们还指出了这一领域的潜在挑战和机遇。本调查总结了过去的RBP-RNA互动领域的发展,并预见到了alphafold时代未来的发展。
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
Molecular machine learning has been maturing rapidly over the last few years.Improved methods and the presence of larger datasets have enabled machine learning algorithms to make increasingly accurate predictions about molecular properties. However, algorithmic progress has been limited due to the lack of a standard benchmark to compare the efficacy of proposed methods; most new algorithms are benchmarked on different datasets making it challenging to gauge the quality of proposed methods. This work introduces MoleculeNet, a large scale benchmark for molecular machine learning. MoleculeNet curates multiple public datasets, establishes metrics for evaluation, and offers high quality open-source implementations of multiple previously proposed molecular featurization and learning algorithms (released as part of the DeepChem
translated by 谷歌翻译
学习有效的蛋白质表示在生物学的各种任务中至关重要,例如预测蛋白质功能或结构。现有的方法通常在大量未标记的氨基酸序列上预先蛋白质语言模型,然后在下游任务中使用一些标记的数据来对模型进行修复。尽管基于序列的方法具有有效性,但尚未探索蛋白质性能预测的已知蛋白质结构的预处理功能,尽管蛋白质结构已知是蛋白质功能的决定因素,但尚未探索。在本文中,我们建议根据其3D结构预处理蛋白质。我们首先提出一个简单而有效的编码器,以学习蛋白质的几何特征。我们通过利用多视图对比学习和不同的自我预测任务来预先蛋白质图编码器。对功能预测和折叠分类任务的实验结果表明,我们提出的预处理方法表现优于或与最新的基于最新的序列方法相提并论,同时使用较少的数据。我们的实施可在https://github.com/deepgraphlearning/gearnet上获得。
translated by 谷歌翻译
刺激:鉴定药物靶标相互作用(DTIS)是药物重新定位的关键步骤。近年来,大量基因组学和药理学数据的积累已经形成了大众药物和目标相关的异构网络(HNS),这提供了开发基于HN的计算模型的新机遇,以准确地预测DTI。 HN意味着许多有关DTI的有用信息,还包含无关的数据,以及如何使最佳的异构网络仍然是一个挑战。结果:在本文中,我们提出了一种基于异构的图形自动元路径学习的DTI预测方法(Hampdti)。 Hampdti从HN自动学习药物和目标之间的重要元路径,并产生元路径图。对于每个元路径图,从药物分子图和靶蛋白序列中学习的特征用作节点属性,然后设计了有效地考虑节点类型信息(药物或目标)的节点类型特定图卷积网络(NSGCN)学习药物和目标的嵌入。最后,组合来自多个元路径图的嵌入式以预测新的DTI。基准数据集的实验表明,与最先进的DTI预测方法相比,我们提出的Hampdti实现了卓越的性能。更重要的是,Hampdti识别DTI预测的重要元路径,这可以解释药物如何与HNS中的目标连接。
translated by 谷歌翻译
药物目标亲和力(DTA)预测是药物发现和药物研究的重要任务。 DTA的准确预测可以极大地受益于新药的设计。随着湿实验的昂贵且耗时,DTA预测的监督数据非常有限。这严重阻碍了基于深度学习的方法的应用,这些方法需要大量的监督数据。为了应对这一挑战并提高DTA预测准确性,我们在这项工作中提出了一个具有几种简单但有效的策略的框架:(1)多任务培训策略,该策略将DTA预测和蒙版语言建模(MLM)任务采用配对的药品目标数据集; (2)一种半监督的训练方法,通过利用大规模的未配对分子和蛋白质来赋予药物和靶向代表性学习,这与以前仅利用仅利用预训练的预训练和微调方法,这些方法仅利用前培训和微调方法训练; (3)一个交叉意见模块,以增强药物和靶代表性之间的相互作用。在三个现实世界基准数据集上进行了广泛的实验:BindingDB,Davis和Kiba。结果表明,我们的框架大大优于现有方法,并实现最先进的性能,例如,$ 0.712 $ rmse在bindingdb ic $ _ {50} $测量上,比以前的最佳工作要改善了$ 5 \%。此外,关于特定药物目标结合活动,药物特征可视化和现实世界应用的案例研究证明了我们工作的巨大潜力。代码和数据在https://github.com/qizhipei/smt-dta上发布
translated by 谷歌翻译