基于神经网络的学习,从光伏(PV)和风中的来源以及负载需求的来源的不可转型可再生发电的分布的学习最近得到了注意力。由于通过直接对数似然最大化训练,归一化流量密度模型特别适用于此任务。然而,从图像生成领域的研究表明,标准归一化流量只能学习歧管分布的涂抹版本。以前的作品在规范化基于流的方案生成的情况下,不要解决这个问题,并且掩弹的分布导致噪声时间序列的采样。在本文中,我们利用了主成分分析(PCA)的等距,从而建立了较低尺寸空间中的标准化流量,同时保持直接和计算有效的似然最大化。我们在2013年至2015年培训PV和风力发电的数据以及德国的负载需求的所得到的主要成分流量(PCF)。本研究结果表明,PCF保留了原始分布的关键特征,如作为时间序列的概率密度和频率行为。然而,PCF的应用不限于可再生能力,而是扩展到任何数据集,时间序列或其他方式,可以使用PCA有效地减少。
translated by 谷歌翻译
我们提出了一种专门的方案生成方法,该方法利用预测信息来生成用于日期调度问题的方案。特别是,我们使用归一化的流量来通过从有条件的分布进行采样,该分布使用风速预测来定制方案到特定的一天。我们将生成的方案应用于风能生产者的随机日期招标问题中,并分析该方案是否产生有利可图的决策。与高斯Copulas和Wasserstein基因的对抗网络相比,正常化的流程成功地缩小了每日趋势周围的各种场景范围,同时保持了各种可能的实现。在随机日间招标问题中,与历史场景的无条件选择相比,所有方法的条件情况都会导致更稳定的盈利结果。归一化流量始终获得最高利润,即使对于小型场景。
translated by 谷歌翻译
现代能源系统的设计和运营受到时间依赖性和不确定参数的严重影响,例如可再生发电,负荷需求和电价。这些通常由称为场景的一组离散的实现表示。一种流行的情景生成方法使用允许场景生成的深生成模型(DGM),而无需现有的数据分布。但是,生成方案的验证很困难,目前缺乏对适当的验证方法的全面讨论。为了开始讨论,我们对能源情景生成文献中当前使用的验证方法的关键评估。特别是,我们评估基于概率密度,自动相关和功率谱密度的验证方法。此外,我们建议使用多重术后波动分析(MFDFA)作为峰,爆发和平稳等非琐碎功能的额外验证方法。作为代表性的例子,我们培养了两种可再生发电时间序列(2013年到2015年德国的Photovolataic Antialsion(VAES),以及来自德国的光伏和风的变分自动化器(VAES)和一天电费时间序列在2017年至2019年形成欧洲能源交换。我们将四种验证方法应用于历史和生成的数据,并讨论验证结果的解释以及验证方法的常见错误,陷阱和局限性。我们的评估表明,没有单一方法足够特征,但理想的验证应该包括多种方法,并且在短时间内的情况下仔细解释。
translated by 谷歌翻译
电力在不同的时间范围和法规上在各个市场上进行交易。由于更高的可再生能源渗透,短期交易变得越来越重要。在德国,盘中电价通常以独特的小时模式围绕EPEX现货市场的白天价格波动。这项工作提出了一种概率建模方法,该方法对日前合同的盘中价格差异进行了建模。该模型通过将每天的每日价格间隔的四个15分钟的间隔视为四维的关节分布,从而捕获了新兴的小时模式。使用归一化流量,即结合条件多元密度估计和概率回归的深层生成模型,从而学习了最终的多元价格差异分布。将归一化流程与选择的历史数据,高斯副群和高斯回归模型进行了比较。在不同的模型中,归一化流量最准确地识别趋势,并且预测间隔最窄。值得注意的是,归一化流是唯一识别稀有价格峰的方法。最后,这项工作讨论了不同外部影响因素的影响,并发现个人大多数因素都可以忽略不计。只有价格差异实现的直接历史和所有投入因素的组合才能显着改善预测。
translated by 谷歌翻译
Normalizing Flows are generative models which produce tractable distributions where both sampling and density evaluation can be efficient and exact. The goal of this survey article is to give a coherent and comprehensive review of the literature around the construction and use of Normalizing Flows for distribution learning. We aim to provide context and explanation of the models, review current state-of-the-art literature, and identify open questions and promising future directions.
translated by 谷歌翻译
标准化流是生成模型,其通过从简单的基本分布到复杂的目标分布的可逆性转换提供易于变换的工艺模型。然而,该技术不能直接模拟支持未知的低维歧管的数据,在诸如图像数据之类的现实世界域中的公共发生。最近的补救措施的尝试引入了击败归一化流量的中央好处的几何并发症:精确密度估计。我们通过保形嵌入流量来恢复这种福利,这是一种设计流动与贸易密度的流动的流动的框架。我们争辩说,使用培训保育嵌入的标准流量是模型支持数据的最自然的方式。为此,我们提出了一系列保形构建块,并在具有合成和实际数据的实验中应用它们,以证明流动可以在不牺牲贸易可能性的情况下模拟歧管支持的分布。
translated by 谷歌翻译
Normalizing flows provide a general mechanism for defining expressive probability distributions, only requiring the specification of a (usually simple) base distribution and a series of bijective transformations. There has been much recent work on normalizing flows, ranging from improving their expressive power to expanding their application. We believe the field has now matured and is in need of a unified perspective. In this review, we attempt to provide such a perspective by describing flows through the lens of probabilistic modeling and inference. We place special emphasis on the fundamental principles of flow design, and discuss foundational topics such as expressive power and computational trade-offs. We also broaden the conceptual framing of flows by relating them to more general probability transformations. Lastly, we summarize the use of flows for tasks such as generative modeling, approximate inference, and supervised learning.
translated by 谷歌翻译
最近的生成机器学习模型的进展重新推出了密码猜测领域的研究兴趣。基于GAN的数据驱动密码猜测方法和深度潜变量模型的方法显示了令人印象深刻的泛化性能,并为密码猜测提供了引人注目的属性。在本文中,我们提出了Passflow,一种基于流的生成模型方法来猜测。基于流的模型允许精确的对数似然计算和优化,这实现了精确潜在的变量推断。此外,基于流的模型提供了有意义的潜在空间表示,这使得能够探索潜在空间和插值的特定子空间。我们展示了生成流量的适用性到密码猜测的背景下,脱离了主要限于图像生成的连续空间的流网络的先前应用。我们显示Passflow能够在使用培训集中的密码猜测任务中以前的最先进的GaN的方法,这是一个训练集,该训练集是小于前一体的训练集。此外,生成的样本的定性分析表明,通信流可以准确地模拟原始密码的分布,甚至是不匹配的样本非常类似于人类的密码。
translated by 谷歌翻译
时间变化数量的估计是医疗保健和金融等领域决策的基本组成部分。但是,此类估计值的实际实用性受到它们量化预测不确定性的准确程度的限制。在这项工作中,我们解决了估计高维多元时间序列的联合预测分布的问题。我们提出了一种基于变压器体系结构的多功能方法,该方法使用基于注意力的解码器估算关节分布,该解码器可被学会模仿非参数Copulas的性质。最终的模型具有多种理想的属性:它可以扩展到数百个时间序列,支持预测和插值,可以处理不规则和不均匀的采样数据,并且可以在训练过程中无缝地适应丢失的数据。我们从经验上证明了这些属性,并表明我们的模型在多个现实世界数据集上产生了最新的预测。
translated by 谷歌翻译
The framework of variational autoencoders allows us to efficiently learn deep latent-variable models, such that the model's marginal distribution over observed variables fits the data. Often, we're interested in going a step further, and want to approximate the true joint distribution over observed and latent variables, including the true prior and posterior distributions over latent variables. This is known to be generally impossible due to unidentifiability of the model. We address this issue by showing that for a broad family of deep latentvariable models, identification of the true joint distribution over observed and latent variables is actually possible up to very simple transformations, thus achieving a principled and powerful form of disentanglement. Our result requires a factorized prior distribution over the latent variables that is conditioned on an additionally observed variable, such as a class label or almost any other observation. We build on recent developments in nonlinear ICA, which we extend to the case with noisy or undercomplete observations, integrated in a maximum likelihood framework. The result also trivially contains identifiable flow-based generative models as a special case.
translated by 谷歌翻译
归一化的流提供了一种优雅的生成建模方法,可以有效地采样和确切的数据分布的密度评估。但是,当在低维歧管上支持数据分布或具有非平凡的拓扑结构时,当前技术的表现性有显着局限性。我们介绍了一个新的统计框架,用于学习局部正常流的混合物作为数据歧管上的“图表图”。我们的框架增强了最近方法的表现力,同时保留了标准化流的签名特性,他们承认了精确的密度评估。我们通过量化自动编码器(VQ-AE)学习了数据歧管图表的合适地图集,并使用条件流量学习了它们的分布。我们通过实验验证我们的概率框架可以使现有方法更好地模拟数据分布,而不是复杂的歧管。
translated by 谷歌翻译
变异推理(VI)的核心原理是将计算复杂后概率密度计算的统计推断问题转换为可拖动的优化问题。该属性使VI比几种基于采样的技术更快。但是,传统的VI算法无法扩展到大型数据集,并且无法轻易推断出越野数据点,而无需重新运行优化过程。该领域的最新发展,例如随机,黑框和摊销VI,已帮助解决了这些问题。如今,生成的建模任务广泛利用摊销VI来实现其效率和可扩展性,因为它利用参数化函数来学习近似的后验密度参数。在本文中,我们回顾了各种VI技术的数学基础,以构成理解摊销VI的基础。此外,我们还概述了最近解决摊销VI问题的趋势,例如摊销差距,泛化问题,不一致的表示学习和后验崩溃。最后,我们分析了改善VI优化的替代差异度量。
translated by 谷歌翻译
标准化流动,扩散归一化流量和变形自动置换器是强大的生成模型。在本文中,我们提供了一个统一的框架来通过马尔可夫链处理这些方法。实际上,我们考虑随机标准化流量作为一对马尔可夫链,满足一些属性,并表明许多用于数据生成的最先进模型适合该框架。马尔可夫链的观点使我们能够将确定性层作为可逆的神经网络和随机层作为大都会加速层,Langevin层和变形自身偏移,以数学上的声音方式。除了具有Langevin层的密度的层,扩散层或变形自身形式,也可以处理与确定性层或大都会加热器层没有密度的层。因此,我们的框架建立了一个有用的数学工具来结合各种方法。
translated by 谷歌翻译
在这项工作中,我们为生成自动编码器的变异培训提供了确切的可能性替代方法。我们表明,可以使用可逆层来构建VAE风格的自动编码器,该层提供了可拖动的精确可能性,而无需任何正则化项。这是在选择编码器,解码器和先前体系结构的全部自由的同时实现的,这使我们的方法成为培训现有VAE和VAE风格模型的替换。我们将结果模型称为流中的自动编码器(AEF),因为编码器,解码器和先验被定义为整体可逆体系结构的单个层。我们表明,在对数可能,样本质量和降低性能的方面,该方法的性能比结构上等效的VAE高得多。从广义上讲,这项工作的主要野心是在共同的可逆性和确切的最大可能性的共同框架下缩小正常化流量和自动编码器文献之间的差距。
translated by 谷歌翻译
主体组件分析(PCA)在给定固定组件维度的一类线性模型的情况下,将重建误差最小化。概率PCA通过学习PCA潜在空间权重的概率分布,从而创建生成模型,从而添加了概率结构。自动编码器(AE)最小化固定潜在空间维度的一类非线性模型中的重建误差,在固定维度处胜过PCA。在这里,我们介绍了概率自动编码器(PAE),该自动编码器(PAE)使用归一化流量(NF)了解了AE潜在空间权重的概率分布。 PAE快速且易于训练,并在下游任务中遇到小的重建错误,样本质量高以及良好的性能。我们将PAE与差异AE(VAE)进行比较,表明PAE训练更快,达到较低的重建误差,并产生良好的样品质量,而无需特殊的调整参数或培训程序。我们进一步证明,PAE是在贝叶斯推理的背景下,用于涂抹和降解应用程序的贝叶斯推断,可以执行概率图像重建的下游任务的强大模型。最后,我们将NF的潜在空间密度确定为有希望的离群检测度量。
translated by 谷歌翻译
与CNN的分类,分割或对象检测相比,生成网络的目标和方法根本不同。最初,它们不是作为图像分析工具,而是生成自然看起来的图像。已经提出了对抗性训练范式来稳定生成方法,并已被证明是非常成功的 - 尽管绝不是第一次尝试。本章对生成对抗网络(GAN)的动机进行了基本介绍,并通​​过抽象基本任务和工作机制并得出了早期实用方法的困难来追溯其成功的道路。将显示进行更稳定的训练方法,也将显示出不良收敛及其原因的典型迹象。尽管本章侧重于用于图像生成和图像分析的gan,但对抗性训练范式本身并非特定于图像,并且在图像分析中也概括了任务。在将GAN与最近进入场景的进一步生成建模方法进行对比之前,将闻名图像语义分割和异常检测的架构示例。这将允许对限制的上下文化观点,但也可以对gans有好处。
translated by 谷歌翻译
特别有趣的是,仅以无监督的生成方式发现有用的表示。但是,尽管现有的正常化流量是否为下游任务提供有效表示的问题,尽管尽管具有强大的样本生成和密度估计能力,但仍未得到答复。本文研究了这样的生成模型家族的问题,这些模型承认确切的可逆性。我们提出了神经主成分分析(Neural-PCA),该分析在\ emph {discending}顺序中捕获主成分时在全维处运行。在不利用任何标签信息的情况下,主要组件恢复了其\ emph {Leading}尺寸中最有用的元素,并将可忽略不计在\ emph {trafing}的尺寸中,允许$ 5 \%$ - $ - $ 10 \%的明确提高性能提高$在下游任务中。在经验上,这种改进是一致的,无论潜在尾随维度的数量下降。我们的工作表明,当表示质量是感兴趣时,将必要的归纳偏差引入生成建模中。
translated by 谷歌翻译
The choice of approximate posterior distribution is one of the core problems in variational inference. Most applications of variational inference employ simple families of posterior approximations in order to allow for efficient inference, focusing on mean-field or other simple structured approximations. This restriction has a significant impact on the quality of inferences made using variational methods. We introduce a new approach for specifying flexible, arbitrarily complex and scalable approximate posterior distributions. Our approximations are distributions constructed through a normalizing flow, whereby a simple initial density is transformed into a more complex one by applying a sequence of invertible transformations until a desired level of complexity is attained. We use this view of normalizing flows to develop categories of finite and infinitesimal flows and provide a unified view of approaches for constructing rich posterior approximations. We demonstrate that the theoretical advantages of having posteriors that better match the true posterior, combined with the scalability of amortized variational approaches, provides a clear improvement in performance and applicability of variational inference.
translated by 谷歌翻译
In this work, we propose a novel generative model for mapping inputs to structured, high-dimensional outputs using structured conditional normalizing flows and Gaussian process regression. The model is motivated by the need to characterize uncertainty in the input/output relationship when making inferences on new data. In particular, in the physical sciences, limited training data may not adequately characterize future observed data; it is critical that models adequately indicate uncertainty, particularly when they may be asked to extrapolate. In our proposed model, structured conditional normalizing flows provide parsimonious latent representations that relate to the inputs through a Gaussian process, providing exact likelihood calculations and uncertainty that naturally increases away from the training data inputs. We demonstrate the methodology on laser-induced breakdown spectroscopy data from the ChemCam instrument onboard the Mars rover Curiosity. ChemCam was designed to recover the chemical composition of rock and soil samples by measuring the spectral properties of plasma atomic emissions induced by a laser pulse. We show that our model can generate realistic spectra conditional on a given chemical composition and that we can use the model to perform uncertainty quantification of chemical compositions for new observed spectra. Based on our results, we anticipate that our proposed modeling approach may be useful in other scientific domains with high-dimensional, complex structure where it is important to quantify predictive uncertainty.
translated by 谷歌翻译
我描述了使用规定规则作为替代物的训练流模型的技巧,以最大程度地发出可能性。此技巧的实用性限制在非条件模型中,但是该方法的扩展应用于数据和条件信息的最大可能性分布的最大可能性,可用于训练复杂的\ textit \ textit {条件{条件}流模型。与以前的方法不同,此方法非常简单:它不需要明确了解条件分布,辅助网络或其他特定体系结构,或者不需要超出最大可能性的其他损失项,并且可以保留潜在空间和数据空间之间的对应关系。所得模型具有非条件流模型的所有属性,对意外输入具有鲁棒性,并且可以预测在给定输入上的解决方案的分布。它们具有预测代表性的保证,并且是解决高度不确定问题的自然和强大方法。我在易于可视化的玩具问题上演示了这些属性,然后使用该方法成功生成类条件图像并通过超分辨率重建高度退化的图像。
translated by 谷歌翻译