近年来,在应用预训练的语言模型(例如Bert)上,取得了巨大进展,以获取信息检索(IR)任务。在网页中通常使用的超链接已被利用用于设计预训练目标。例如,超链接的锚文本已用于模拟查询,从而构建了巨大的查询文档对以进行预训练。但是,作为跨越两个网页的桥梁,尚未完全探索超链接的潜力。在这项工作中,我们专注于建模通过超链接连接的两个文档之间的关系,并为临时检索设计一个新的预训练目标。具体而言,我们将文档之间的关系分为四组:无链接,单向链接,对称链接和最相关的对称链接。通过比较从相邻组采样的两个文档,该模型可以逐渐提高其捕获匹配信号的能力。我们提出了一个渐进的超链接预测({php})框架,以探索预训练中超链接的利用。对两个大规模临时检索数据集和六个提问数据集的实验结果证明了其优于现有的预训练方法。
translated by 谷歌翻译
知识密集型语言任务(苏格兰信)通常需要大量信息来提供正确的答案。解决此问题的一种流行范式是将搜索系统与机器读取器相结合,前者检索支持证据,后者检查它们以产生答案。最近,读者组成部分在大规模预培养的生成模型的帮助下见证了重大进展。同时,搜索组件中的大多数现有解决方案都依赖于传统的``索引 - retrieve-then-Rank''管道,该管道遭受了巨大的内存足迹和端到端优化的困难。受到最新构建基于模型的IR模型的努力的启发,我们建议用新颖的单步生成模型替换传统的多步搜索管道,该模型可以极大地简化搜索过程并以端到端的方式进行优化。我们表明,可以通过一组经过适当设计的预训练任务来学习强大的生成检索模型,并被采用以通过进一步的微调来改善各种下游苏格兰短裙任务。我们将预训练的生成检索模型命名为Copusbrain,因为有关该语料库的所有信息均以其参数进行编码,而无需构造其他索引。经验结果表明,在苏格兰语基准上的检索任务并建立了新的最新性能,Copusbrain可以极大地超过强大的基准。我们还表明,在零农源和低资源设置下,科体班运行良好。
translated by 谷歌翻译
搜索会话中的上下文信息对于捕获用户的搜索意图很重要。已经提出了各种方法来对用户行为序列进行建模,以改善会话中的文档排名。通常,(搜索上下文,文档)对的训练样本在每个训练时期随机采样。实际上,了解用户的搜索意图和判断文档的相关性的困难从一个搜索上下文到另一个搜索上下文有很大差异。混合不同困难的训练样本可能会使模型的优化过程感到困惑。在这项工作中,我们为上下文感知文档排名提出了一个课程学习框架,其中排名模型以易于恐惧的方式学习搜索上下文和候选文档之间的匹配信号。这样一来,我们旨在将模型逐渐指向全球最佳。为了利用正面和负面示例,设计了两个课程。两个真实查询日志数据集的实验表明,我们提出的框架可以显着提高几种现有方法的性能,从而证明课程学习对上下文感知文档排名的有效性。
translated by 谷歌翻译
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a;Radford et al., 2018), BERT is designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be finetuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial taskspecific architecture modifications.BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).
translated by 谷歌翻译
Dense retrieval aims to map queries and passages into low-dimensional vector space for efficient similarity measuring, showing promising effectiveness in various large-scale retrieval tasks. Since most existing methods commonly adopt pre-trained Transformers (e.g. BERT) for parameter initialization, some work focuses on proposing new pre-training tasks for compressing the useful semantic information from passages into dense vectors, achieving remarkable performances. However, it is still challenging to effectively capture the rich semantic information and relations about passages into the dense vectors via one single particular pre-training task. In this work, we propose a multi-task pre-trained model, MASTER, that unifies and integrates multiple pre-training tasks with different learning objectives under the bottlenecked masked autoencoder architecture. Concretely, MASTER utilizes a multi-decoder architecture to integrate three types of pre-training tasks: corrupted passages recovering, related passage recovering and PLMs outputs recovering. By incorporating a shared deep encoder, we construct a representation bottleneck in our architecture, compressing the abundant semantic information across tasks into dense vectors. The first two types of tasks concentrate on capturing the semantic information of passages and relationships among them within the pre-training corpus. The third one can capture the knowledge beyond the corpus from external PLMs (e.g. GPT-2). Extensive experiments on several large-scale passage retrieval datasets have shown that our approach outperforms the previous state-of-the-art dense retrieval methods. Our code and data are publicly released in https://github.com/microsoft/SimXNS
translated by 谷歌翻译
This paper presents a pre-training technique called query-as-context that uses query prediction to improve dense retrieval. Previous research has applied query prediction to document expansion in order to alleviate the problem of lexical mismatch in sparse retrieval. However, query prediction has not yet been studied in the context of dense retrieval. Query-as-context pre-training assumes that the predicted query is a special context for the document and uses contrastive learning or contextual masked auto-encoding learning to compress the document and query into dense vectors. The technique is evaluated on large-scale passage retrieval benchmarks and shows considerable improvements compared to existing strong baselines such as coCondenser and CoT-MAE, demonstrating its effectiveness. Our code will be available at https://github.com/caskcsg/ir/tree/main/cotmae-qc .
translated by 谷歌翻译
密集的段落检索旨在根据查询和段落的密集表示(即矢量)从大型语料库中检索查询的相关段落。最近的研究探索了改善预训练的语言模型,以提高密集的检索性能。本文提出了COT-MAE(上下文掩盖自动编码器),这是一种简单而有效的生成性预训练方法,可用于密集通道检索。 COT-MAE采用了不对称的编码器架构,该体系结构学会通过自我监督和上下文监督的掩盖自动编码来将句子语义压缩到密集的矢量中。精确,自我监督的掩盖自动编码学会学会为文本跨度内的令牌的语义建模,并学习上下文监督的蒙版自动编码学学习以建模文本跨度之间的语义相关性。我们对大规模通道检索基准进行实验,并显示出对强基础的大量改进,证明了COT-MAE的效率很高。
translated by 谷歌翻译
在这项工作中,我们提出了一个系统的实证研究,专注于最先进的多语言编码器在跨越多种不同语言对的交叉语言文档和句子检索任务的适用性。我们首先将这些模型视为多语言文本编码器,并在无监督的ad-hoc句子和文档级CLIR中基准性能。与监督语言理解相比,我们的结果表明,对于无监督的文档级CLIR - 一个没有针对IR特定的微调 - 预训练的多语言编码器的相关性判断,平均未能基于CLWE显着优于早期模型。对于句子级检索,我们确实获得了最先进的性能:然而,通过多语言编码器来满足高峰分数,这些编码器已经进一步专注于监督的时尚,以便句子理解任务,而不是使用他们的香草'现货'变体。在这些结果之后,我们介绍了文档级CLIR的本地化相关性匹配,在那里我们独立地对文件部分进行了查询。在第二部分中,我们评估了在一系列零拍语言和域转移CLIR实验中的英语相关数据中进行微调的微调编码器精细调整的微调我们的结果表明,监督重新排名很少提高多语言变压器作为无监督的基数。最后,只有在域名对比度微调(即,同一域名,只有语言转移),我们设法提高排名质量。我们在目标语言中单次检索的交叉定向检索结果和结果(零拍摄)交叉传输之间的显着实证差异,这指出了在单机数据上训练的检索模型的“单声道过度装备”。
translated by 谷歌翻译
时间是文档的重要方面,用于一系列NLP和IR任务。在这项工作中,我们研究了在预训练期间合并时间信息的方法,以进一步提高与时间相关的任务的性能。与Bert相比,使用同步文档收集(BooksCorpus和English Wikipedia)作为培训语料库相比,我们使用长跨度的时间新闻文章集合来构建单词表示。我们介绍了Timebert,这是一种新颖的语言表示模型,该模型通过两项新的预训练任务培训了新闻文章的临时收集,这些任务利用了两个不同的时间信号来构建时间认识的语言表示。实验结果表明,TimeBert始终胜过BERT和其他现有的预训练模型,在不同的下游NLP任务或应用程序上,时间很高的时间很重要。
translated by 谷歌翻译
我们提出了一种以最小计算成本提高广泛检索模型的性能的框架。它利用由基本密度检索方法提取的预先提取的文档表示,并且涉及训练模型以共同评分每个查询的一组检索到的候选文档,同时在其他候选的上下文中暂时转换每个文档的表示。以及查询本身。当基于其与查询的相似性进行评分文档表示时,该模型因此意识到其“对等”文档的表示。我们表明,我们的方法导致基本方法的检索性能以及彼此隔离的评分候选文档进行了大量改善,如在一对培训环境中。至关重要的是,与基于伯特式编码器的术语交互重型器不同,它在运行时在任何第一阶段方法的顶部引发可忽略不计的计算开销,允许它与任何最先进的密集检索方法容易地结合。最后,同时考虑给定查询的一组候选文档,可以在检索中进行额外的有价值的功能,例如评分校准和减轻排名中的社会偏差。
translated by 谷歌翻译
排名模型是信息检索系统的主要组成部分。排名的几种方法是基于传统的机器学习算法,使用一组手工制作的功能。最近,研究人员在信息检索中利用了深度学习模型。这些模型的培训结束于结束,以提取来自RAW数据的特征来排序任务,因此它们克服了手工制作功能的局限性。已经提出了各种深度学习模型,每个模型都呈现了一组神经网络组件,以提取用于排名的特征。在本文中,我们在不同方面比较文献中提出的模型,以了解每个模型的主要贡献和限制。在我们对文献的讨论中,我们分析了有前途的神经元件,并提出了未来的研究方向。我们还显示文档检索和其他检索任务之间的类比,其中排名的项目是结构化文档,答案,图像和视频。
translated by 谷歌翻译
大型语言模型在各种任务上显示出令人印象深刻的几次结果。但是,当知识是此类结果的关键时,就像问题回答和事实检查之类的任务一样,似乎需要存储知识的大量参数计数。众所周知,检索增强模型可以在不需要多个参数的情况下在知识密集的任务上表现出色,但是目前尚不清楚它们是否在几个弹药设置中工作。在这项工作中,我们介绍了地图集,这是一个经过精心设计和预先训练的增强语言模型,能够通过很少的培训示例学习知识密集型任务。我们对包括MMLU,苏格兰短裙和归类等各种任务进行评估,并研究文档索引内容的影响,表明它可以很容易地进行更新。值得注意的是,在自然问题上仅使用64个示例在自然问题上达到超过42 \%的准确性,尽管参数少了50倍,但比540B参数模型的表现优于540b参数模型。
translated by 谷歌翻译
事实证明,将先验知识纳入预训练的语言模型中对知识驱动的NLP任务有效,例如实体键入和关系提取。当前的培训程序通常通过使用知识掩盖,知识融合和知识更换将外部知识注入模型。但是,输入句子中包含的事实信息尚未完全开采,并且尚未严格检查注射的外部知识。结果,无法完全利用上下文信息,并将引入额外的噪音,或者注入的知识量受到限制。为了解决这些问题,我们提出了MLRIP,该MLRIP修改了Ernie-Baidu提出的知识掩盖策略,并引入了两阶段的实体替代策略。进行全面分析的广泛实验说明了MLRIP在军事知识驱动的NLP任务中基于BERT的模型的优势。
translated by 谷歌翻译
在本文中,我们提出了一个新的密集检索模型,该模型通过深度查询相互作用学习了各种文档表示。我们的模型使用一组生成的伪Queries编码每个文档,以获取查询信息的多视文档表示。它不仅具有较高的推理效率,例如《香草双编码模型》,而且还可以在文档编码中启用深度查询文档的交互,并提供多方面的表示形式,以更好地匹配不同的查询。几个基准的实验证明了所提出的方法的有效性,表现出色的双重编码基准。
translated by 谷歌翻译
来自变压器(BERT)的双向编码器表示显示了各种NLP任务的奇妙改进,并且已经提出了其连续的变体来进一步提高预先训练的语言模型的性能。在本文中,我们的目标是首先介绍中国伯特的全文掩蔽(WWM)策略,以及一系列中国预培训的语言模型。然后我们还提出了一种简单但有效的型号,称为Macbert,这在几种方面提高了罗伯塔。特别是,我们提出了一种称为MLM作为校正(MAC)的新掩蔽策略。为了展示这些模型的有效性,我们创建了一系列中国预先培训的语言模型,作为我们的基线,包括BERT,Roberta,Electra,RBT等。我们对十个中国NLP任务进行了广泛的实验,以评估创建的中国人托管语言模型以及提议的麦克白。实验结果表明,Macbert可以在许多NLP任务上实现最先进的表演,我们还通过几种可能有助于未来的研究的调查结果来消融细节。我们开源我们的预先培训的语言模型,以进一步促进我们的研究界。资源可用:https://github.com/ymcui/chinese-bert-wwm
translated by 谷歌翻译
预先接受的语言模型实现了最先进的导致各种自然语言处理(NLP)任务。 GPT-3表明,缩放预先训练的语言模型可以进一步利用它们的巨大潜力。最近提出了一个名为Ernie 3.0的统一框架,以预先培训大型知识增强型号,并培训了具有10亿参数的模型。 Ernie 3.0在各种NLP任务上表现出最先进的模型。为了探讨缩放的表现,我们培养了百卢比的3.0泰坦参数型号,在PaddlePaddle平台上有高达260亿参数的泰坦。此外,我们设计了一种自我监督的对抗性损失和可控语言建模损失,以使ERNIE 3.0 TITAN产生可信和可控的文本。为了减少计算开销和碳排放,我们向Ernie 3.0泰坦提出了一个在线蒸馏框架,教师模型将同时教授学生和培训。埃塞尼3.0泰坦是迄今为止最大的中国密集预训练模型。经验结果表明,Ernie 3.0泰坦在68个NLP数据集中优于最先进的模型。
translated by 谷歌翻译
广义文本表示是许多自然语言理解任务的基础。要充分利用不同的语料库,不可避免地需要了解它们之间的相关性。但是,许多方法忽略了相关性,并直接用于所有任务的单通道模型(粗糙的范式),这缺乏足够的理性和解释。此外,一些现有的作品通过针迹技能块(一个精细的范式)学习下游任务,这可能会导致其冗余和噪音,从而导致非理性。在这项工作中,我们首先通过三种不同的观点分析任务相关性,即数据属性,手动设计和基于模型的相关性,基于相似的任务被分组在一起。然后,我们提出了一个用粗到细范式的层次结构框架,其最底层共享了所有任务,中层级别分为不同的组,以及分配给每个任务的顶级级别。这使我们的模型可以从所有任务中学习基本的语言属性,提高相关任务的性能,并减少不相关任务的负面影响。我们在五个自然语言理解任务的13个基准数据集上进行的实验证明了我们方法的优势。
translated by 谷歌翻译
We present SpanBERT, a pre-training method that is designed to better represent and predict spans of text. Our approach extends BERT by (1) masking contiguous random spans, rather than random tokens, and (2) training the span boundary representations to predict the entire content of the masked span, without relying on the individual token representations within it. Span-BERT consistently outperforms BERT and our better-tuned baselines, with substantial gains on span selection tasks such as question answering and coreference resolution. In particular, with the same training data and model size as BERT large , our single model obtains 94.6% and 88.7% F1 on SQuAD 1.1 and 2.0 respectively. We also achieve a new state of the art on the OntoNotes coreference resolution task (79.6% F1), strong performance on the TACRED relation extraction benchmark, and even gains on GLUE. 1 * Equal contribution. 1 Our code and pre-trained models are available at https://github.com/facebookresearch/ SpanBERT.
translated by 谷歌翻译
We present Pre-trained Machine Reader (PMR), a novel method to retrofit Pre-trained Language Models (PLMs) into Machine Reading Comprehension (MRC) models without acquiring labeled data. PMR is capable of resolving the discrepancy between model pre-training and downstream fine-tuning of existing PLMs, and provides a unified solver for tackling various extraction tasks. To achieve this, we construct a large volume of general-purpose and high-quality MRC-style training data with the help of Wikipedia hyperlinks and design a Wiki Anchor Extraction task to guide the MRC-style pre-training process. Although conceptually simple, PMR is particularly effective in solving extraction tasks including Extractive Question Answering and Named Entity Recognition, where it shows tremendous improvements over previous approaches especially under low-resource settings. Moreover, viewing sequence classification task as a special case of extraction task in our MRC formulation, PMR is even capable to extract high-quality rationales to explain the classification process, providing more explainability of the predictions.
translated by 谷歌翻译
This paper presents a new UNIfied pre-trained Language Model (UNILM) that can be fine-tuned for both natural language understanding and generation tasks. The model is pre-trained using three types of language modeling tasks: unidirectional, bidirectional, and sequence-to-sequence prediction. The unified modeling is achieved by employing a shared Transformer network and utilizing specific self-attention masks to control what context the prediction conditions on. UNILM compares favorably with BERT on the GLUE benchmark, and the SQuAD 2.0 and CoQA question answering tasks. Moreover, UNILM achieves new state-ofthe-art results on five natural language generation datasets, including improving the CNN/DailyMail abstractive summarization ROUGE-L to 40.51 (2.04 absolute improvement), the Gigaword abstractive summarization ROUGE-L to 35.75 (0.86 absolute improvement), the CoQA generative question answering F1 score to 82.5 (37.1 absolute improvement), the SQuAD question generation BLEU-4 to 22.12 (3.75 absolute improvement), and the DSTC7 document-grounded dialog response generation NIST-4 to 2.67 (human performance is 2.65). The code and pre-trained models are available at https://github.com/microsoft/unilm. * Equal contribution. † Contact person.
translated by 谷歌翻译