在异构机器人网络上进行计算负载共享是一个有希望的方法,可以将机器人能力和效率作为极端环境中的团队提高。然而,在这种环境中,通信链路可以是间歇性的,并且与云或因特网的连接可能是不存在的。在本文中,我们介绍了用于多机器人系统的通信感知,计算任务调度问题,并提出了整数线性程序(ILP),该程序(ILP)优化了异构机器人网络中的计算任务分配,占网络机器人的计算能力对于可用(和可能的时变)通信链接。我们考虑调度由依赖关系图建模的一组相互依赖的必需任务和可选任务。我们为共享世界,分布式系统提供了一项备份的调度架构。我们验证了ILP制定和不同计算平台中的分布式实现,并在模拟场景中,偏向于月球或行星探索方案。我们的研究结果表明,与没有计算负载共享的类似系统相比,所提出的实施方式可以优化提高时间表以允许三倍增加所执行的奖励任务的数量(例如,科学测量)。
translated by 谷歌翻译
休眠季节葡萄树修剪需要熟练的季节性工人,这在冬季变得越来越缺乏。随着在短期季节性招聘文化和低工资的短期季节性招聘文化和低工资的时间内,随着工人更少的葡萄藤,葡萄藤往往被修剪不一致地导致葡萄化物不平衡。除此之外,目前现有的机械方法无法选择性地修剪葡萄园和手动后续操作,通常需要进一步提高生产成本。在本文中,我们展示了崎岖,全自治机器人的设计和田间评估,用于休眠季节葡萄园的端到最终修剪。该设计的设计包括新颖的相机系统,运动冗余机械手,地面机器人和在感知系统中的新颖算法。所提出的研究原型机器人系统能够在213秒/葡萄藤中完全从两侧刺激一排藤蔓,总修枝精度为87%。与机械预灌浆试验相比,商业葡萄园中自治系统的初始现场测试显示出休眠季节修剪的显着变化。在手稿中描述了设计方法,系统组件,经验教训,未来增强以及简要的经济分析。
translated by 谷歌翻译
本文介绍了使用腿收割机进行精密收集任务的集成系统。我们的收割机在狭窄的GPS拒绝了森林环境中的自主导航和树抓取了一项挑战性的任务。提出了映射,本地化,规划和控制的策略,并集成到完全自主系统中。任务从使用定制的传感器模块开始使用人员映射感兴趣区域。随后,人类专家选择树木进行收获。然后将传感器模块安装在机器上并用于给定地图内的本地化。规划算法在单路径规划问题中搜索一个方法姿势和路径。我们设计了一个路径,后面的控制器利用腿的收割机的谈判粗糙地形的能力。在达接近姿势时,机器用通用夹具抓住一棵树。此过程重复操作员选择的所有树。我们的系统已经在与树干和自然森林中的测试领域进行了测试。据我们所知,这是第一次在现实环境中运行的全尺寸液压机上显示了这一自主权。
translated by 谷歌翻译
Mohamed Bin Zayed国际机器人挑战(MBZIRC)2020为无人机(无人机)构成了不同的挑战。我们提供了四个量身定制的无人机,专门为MBZIRC的单独空中机器人任务开发,包括自定义硬件和软件组件。在挑战1中,使用高效率,车载对象检测管道进行目标UAV,以捕获来自目标UAV的球。第二个UAV使用类似的检测方法来查找和流行散落在整个竞技场的气球。对于挑战2,我们展示了一种能够自主空中操作的更大的无人机:从相机图像找到并跟踪砖。随后,将它们接近,挑选,运输并放在墙上。最后,在挑战3中,我们的UAV自动发现使用LIDAR和热敏摄像机的火灾。它用船上灭火器熄灭火灾。虽然每个机器人都具有任务特定的子系统,但所有无人机都依赖于为该特定和未来竞争开发的标准软件堆栈。我们介绍了我们最开源的软件解决方案,包括系统配置,监控,强大无线通信,高级控制和敏捷轨迹生成的工具。为了解决MBZirc 2020任务,我们在多个研究领域提出了机器视觉和轨迹生成的多个研究领域。我们介绍了我们的科学贡献,这些贡献构成了我们的算法和系统的基础,并分析了在阿布扎比的MBZIRC竞赛2020年的结果,我们的系统在大挑战中达到了第二名。此外,我们讨论了我们参与这种复杂的机器人挑战的经验教训。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
近年来,物联网设备的数量越来越快,这导致了用于管理,存储,分析和从不同物联网设备的原始数据做出决定的具有挑战性的任务,尤其是对于延时敏感的应用程序。在车辆网络(VANET)环境中,由于常见的拓扑变化,车辆的动态性质使当前的开放研究发出更具挑战性,这可能导致车辆之间断开连接。为此,已经在5G基础设施上计算了云和雾化的背景下提出了许多研究工作。另一方面,有多种研究提案旨在延长车辆之间的连接时间。已经定义了车辆社交网络(VSN)以减少车辆之间的连接时间的负担。本调查纸首先提供了关于雾,云和相关范例,如5G和SDN的必要背景信息和定义。然后,它将读者介绍给车辆社交网络,不同的指标和VSN和在线社交网络之间的主要差异。最后,本调查调查了在展示不同架构的VANET背景下的相关工作,以解决雾计算中的不同问题。此外,它提供了不同方法的分类,并在雾和云的上下文中讨论所需的指标,并将其与车辆社交网络进行比较。与VSN和雾计算领域的新研究挑战和趋势一起讨论了相关相关工程的比较。
translated by 谷歌翻译
在AI研究中,合成动作计划通常使用了抽象地指定由于动作而导致的动作的描述性模型,并针对有效计算状态转换来定制。然而,执行计划的动作已经需要运行模型,其中使用丰富的计算控制结构和闭环在线决策来指定如何在非预定的执行上下文中执行动作,对事件作出反应并适应展开情况。整合行动和规划的审议演员通常需要将这两种模型一起使用 - 在尝试开发不同的型号时会导致问题,验证它们的一致性,并顺利交错和规划。作为替代方案,我们定义和实施综合作用和规划系统,其中规划和行为使用相同的操作模型。这些依赖于提供丰富的控制结构的分层任务导向的细化方法。称为反应作用发动机(RAE)的作用组件由众所周知的PRS系统启发。在每个决定步骤中,RAE可以从计划者获取建议,以获得关于效用功能的近乎最佳选择。随时计划使用像UPOM的UCT类似的蒙特卡罗树搜索程序,其推出是演员操作模型的模拟。我们还提供与RAE和UPOM一起使用的学习策略,从在线代理体验和/或模拟计划结果,从决策背景下映射到方法实例以及引导UPOM的启发式函数。我们展示了富豪朝向静态域的最佳方法的渐近融合,并在实验上展示了UPOM和学习策略显着提高了作用效率和鲁棒性。
translated by 谷歌翻译
船上自治技术,如规划和调度,识别科学目标和基于内容的数据摘要,将导致令人兴奋的新空间科学任务。然而,尚未研究具有此类船上自治能力的经营任务的挑战,这是足以在使命概念中考虑的细节水平。这些自主功能需要更改当前的操作流程,实践和工具。我们制定了一个案例研究,以评估使运营商和科学家通过促进地面人员和车载算法之间的共同模型来运营自主航天器所需的变化。我们评估使运营商和科学家能够向航天器传达所需的新的操作工具和工作流程,并能够重建和解释船上和航天器状态的决定。这些工具的模型用于用户学习,了解过程和工具在实现共享理解框架方面的有效性,以及在运营商和科学家有效实现特派团科学目标的能力。
translated by 谷歌翻译
安装在微空中车辆(MAV)上的地面穿透雷达是有助于协助人道主义陆地间隙的工具。然而,合成孔径雷达图像的质量取决于雷达天线的准确和精确运动估计以及与MAV产生信息性的观点。本文介绍了一个完整的自动空气缩进的合成孔径雷达(GPSAR)系统。该系统由空间校准和时间上同步的工业级传感器套件组成,使得在地面上方,雷达成像和光学成像。自定义任务规划框架允许在地上控制地上的Stripmap和圆形(GPSAR)轨迹的生成和自动执行,以及空中成像调查飞行。基于因子图基于Dual接收机实时运动(RTK)全局导航卫星系统(GNSS)和惯性测量单元(IMU)的测量值,以获得精确,高速平台位置和方向。地面真理实验表明,传感器时机为0.8美元,正如0.1美元的那样,定位率为1 kHz。与具有不确定标题初始化的单个位置因子相比,双位置因子配方可提高高达40%,批量定位精度高达59%。我们的现场试验验证了本地化准确性和精度,使得能够相干雷达测量和检测在沙子中埋入的雷达目标。这验证了作为鸟瞰着地图检测系统的潜力。
translated by 谷歌翻译
我们提供了机器人智能系统和控制(RISC)LAB MULTIAGEGGENT测试,用于在室外环境中的可靠搜索和救援和空中运输。该系统包括三个多陆无人机(无人机)的团队,能够在室外场中自主搜索,拾取和运输随机分布的物体。该方法涉及基于视觉的物体检测和定位,具有我们的新颖设计,基于GPS的UAV导航和下降区的物体的安全释放。我们的合作策略可确保无人机之间安全的空间分离,我们可以使用已启用的通信共识,防止下落区域的冲突。所有计算都在每个UAV上执行。我们描述了系统的完整软件和硬件架构,并使用全面的户外实验展示其可靠的性能,并通过将我们的结果与最近的一些类似的作品进行比较。
translated by 谷歌翻译
我们考虑将订单和机架分配给多个站点的问题,并在机器人辅助Kiva仓库中的每个站测序它们的互连处理流程。涉及问题的各种决定,它与实时紧密相关,必须实时解决,以便易于治疗。但是,利用订单分配与采摘站调度之间的协同作用效益采摘效率。我们开发了一个完整的数学模型,考虑到协同作用,以尽量减少机架访问总数。为了解决这个难以解决的问题,我们开发了一种基于模拟退火和动态规划的高效算法。计算研究表明,在解决方案质量方面,所提出的方法优于实践中使用的规则的策略。此外,结果表明,忽略订单分配政策会导致真实世界大小的实例相当最优的差距。
translated by 谷歌翻译
讨论了与科学,工程,建筑和人为因素相关的月球表面上的运输设施问题。未来十年制造的后勤决策可能对财务成功至关重要。除了概述一些问题及其与数学和计算的关系外,本文还为决策者,科学家和工程师提供了有用的资源。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
主动位置估计(APE)是使用一个或多个传感平台本地化一个或多个目标的任务。 APE是搜索和拯救任务,野生动物监测,源期限估计和协作移动机器人的关键任务。 APE的成功取决于传感平台的合作水平,他们的数量,他们的自由度和收集的信息的质量。 APE控制法通过满足纯粹剥削或纯粹探索性标准,可以实现主动感测。前者最大限度地减少了位置估计的不确定性;虽然后者驱动了更接近其任务完成的平台。在本文中,我们定义了系统地分类的主要元素,并批判地讨论该域中的最新状态。我们还提出了一个参考框架作为对截图相关的解决方案的形式主义。总体而言,本调查探讨了主要挑战,并设想了本地化任务的自主感知系统领域的主要研究方向。促进用于搜索和跟踪应用的强大主动感测方法的开发也有益。
translated by 谷歌翻译
具有切换持续时间的轮询系统是具有若干实际应用的有用模型。它被归类为离散事件动态系统(DED),没有人在建模方法中同意的是。此外,DEDS非常复杂。迄今为止,最复杂的兴趣调查系统建模的方法是连续时间马尔可夫决策过程(CTMDP)。本文提出了一个半马尔可夫决策过程(SMDP)轮询系统的制定,以引入额外的建模能力。这种权力以截断误差和昂贵的数值积分为代价,自然导致SMDP政策是否提供有价值的优势。为了进一步添加到此方案,显示CTMDP中可以利用稀疏性以开发计算有效的模型。使用半Markov过程模拟器评估SMDP和CTMDP策略的折扣性能。两项政策伴随着专门为该投票系统开发的启发式政策,作为详尽的服务政策。参数和非参数假设试验用于测试性能差异是否有统计学意义。
translated by 谷歌翻译
在移动机器人学中,区域勘探和覆盖率是关键能力。在大多数可用研究中,共同的假设是全球性,远程通信和集中合作。本文提出了一种新的基于群的覆盖控制算法,可以放松这些假设。该算法组合了两个元素:Swarm规则和前沿搜索算法。受到大量简单代理(例如,教育鱼,植绒鸟类,蜂拥昆虫)的自然系统的启发,第一元素使用三个简单的规则来以分布式方式维持群体形成。第二元素提供了选择有希望区域以使用涉及代理的相对位置的成本函数的最小化来探索(和覆盖)的装置。我们在不同环境中测试了我们的方法对异质和同质移动机器人的性能。我们衡量覆盖性能和允许本集团维持沟通的覆盖性能和群体形成统计数据。通过一系列比较实验,我们展示了拟议的策略在最近提出的地图覆盖方法和传统的人工潜在领域基于细胞覆盖,转变和安全路径的百分比,同时保持允许短程的形成沟通。
translated by 谷歌翻译
虽然在各种应用中广泛使用刚性机器人,但它们在他们可以执行的任务中受到限制,并且在密切的人机交互中可以保持不安全。另一方面,软机器鞋面超越了刚性机器人的能力,例如与工作环境,自由度,自由度,制造成本和与环境安全互动的兼容性。本文研究了纤维增强弹性机壳(释放)作为一种特定类型的软气动致动器的行为,可用于软装饰器。创建动态集参数模型以在各种操作条件下模拟单一免费的运动,并通知控制器的设计。所提出的PID控制器使用旋转角度来控制多项式函数之后的自由到限定的步进输入或轨迹的响应来控制末端执行器的方向。另外,采用有限元分析方法,包括释放的固有非线性材料特性,精确地评估释放的各种参数和配置。该工具还用于确定模块中多个释放的工作空间,这基本上是软机械臂的构建块。
translated by 谷歌翻译
通信系统是自主UAV系统设计的关键部分。它必须解决不同的考虑因素,包括UAV的效率,可靠性和移动性。此外,多UAV系统需要通信系统,以帮助在UAV的团队中提供信息共享,任务分配和协作。在本文中,我们审查了在考虑在电力线检查行业的应用程序时支持无人机团队的通信解决方案。我们提供候选无线通信技术的审查{用于支持UAV应用程序中的通信。综述了这些候选技术的性能测量和无人机相关的频道建模。提出了对构建UAV网状网络的当前技术的讨论。然后,我们分析机器人通信中间件,ROS和ROS2的结构,界面和性能。根据我们的审查,提出了通信系统中每层候选解决方案的特征和依赖性。
translated by 谷歌翻译
我们向连续状态马尔可夫决策过程(MDP)提出了一种扩散近似方法,该方法可用于解决非结构化的越野环境中的自主导航和控制。与呈现完全已知的状态转换模型的大多数决策定理计划框架相比,我们设计了一种方法,该方法消除了这种强烈假设,这些假设通常非常难以在现实中工程师。我们首先采用价值函数的二阶泰勒扩展。然后通过部分微分方程近似贝尔曼的最优性方程,其仅依赖于转换模型的第一和第二矩。通过组合价值函数的内核表示,然后设计一种有效的策略迭代算法,其策略评估步骤可以表示为特征的方程式的线性系统,其特征是由有限组支持状态。我们首先通过大量的仿真以2D美元的$ 2D $避让和2.5d $地形导航问题进行验证。结果表明,拟议的方法在几个基线上导致了卓越的性能。然后,我们开发一个系统,该系统将我们的决策框架整合,与船上感知,并在杂乱的室内和非结构化的户外环境中进行现实世界的实验。物理系统的结果进一步展示了我们在挑战现实世界环境中的方法的适用性。
translated by 谷歌翻译
在本报告中,我们提出了在哥斯达黎加太平洋架子和圣托里尼 - Kolumbo Caldera Complex中,在寻找寿命中的寻找寿命任务中的自主海洋机器人技术协调,操作策略和结果。它作为可能存在于海洋超越地球的环境中的类似物。本报告侧重于ROV操纵器操作的自动化,用于从海底获取有针对性的生物样品收集和返回的。在未来的外星勘查任务到海洋世界的背景下,ROV是一个模拟的行星着陆器,必须能够有能力的高水平自主权。我们的田间试验涉及两个水下车辆,冰(Nui)杂交ROV的两个水下车辆(即,龙眼或自主)任务,都配备了7-DOF液压机械手。我们描述了一种适应性,硬件无关的计算机视觉架构,可实现高级自动化操作。 Vision系统提供了对工作空间的3D理解,以便在复杂的非结构化环境中通知操纵器运动计划。我们展示了视觉系统和控制框架通过越来越具有挑战性的环境中的现场试验的有效性,包括来自活性Undersea火山,Kolumbo内的自动收集和生物样品的回报。根据我们在该领域的经验,我们讨论了我们的系统的表现,并确定了未来研究的有希望的指示。
translated by 谷歌翻译