我们为预测资源分配提供了一个有效的参数建模框架,专注于计算资源的量,可以针对无服务器查询处理设置中的数据分析的一系列价格性能目标进行优化。我们深入讨论和评估我们的系统,AutoExecutor如何使用此框架可以自动选择在Azure Synapse上运行的Spark SQL查询的近最佳执行程序和核心计数。我们的技术通过在运行查询的同时大大减少分配和执行者占用的总延期占用者的总延迟器,从而提高了Spark的内置,无功,动态的执行能力分配功能,从而释放可能被其他并发查询或减少整体集群供应需求的执行者。与诸如Sparklens之类的执行后分析工具相比,我们预测在执行它们之前对查询的资源分配,并且还可以解释输入数据大小的更改,以预测所需的分配。
translated by 谷歌翻译
操作系统包括许多启发式算法,旨在提高整体存储性能和吞吐量。由于此类启发式is不能适用于所有条件和工作负载,因此系统设计人员诉诸用户对用户的众多可调参数揭示 - 基本上负担用户不断优化自己的存储系统和应用程序。存储系统通常负责I / O重型应用中的大多数延迟,因此即使是小的总延迟改善也可能很重要。机器学习(ml)技术承诺学习模式,从它们概括,并实现适应更改工作负载的最佳解决方案。我们提出ML解决方案成为OSS中的一流组件,并更换了动态优化存储系统的手动启发式。在本文中,我们描述了我们所提出的ML架构,称为KML。我们开发了一个原型KML体系结构,并将其应用于两个问题:最佳readAhead和NFS读取大小值。我们的实验表明,KML消耗了很少的操作系统资源,延迟可忽略不计,但可以学习可以分别为两种用例的2.3倍或15倍提高I / O吞吐量的模式 - 即使是复杂的,也不是为了复杂 - 在不同的存储设备上同时运行混合工作负载。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
云自动缩放机制通常基于缩放集群的无功自动化规则,每当某些指标,例如情况下的平均CPU使用量超过预定义阈值。调整这些规则在缩放群集时变得特别繁琐,群集涉及不可忽略的时间来引导新实例,因为它经常在生产云服务中发生。要处理此问题,我们提出了一种基于在不久的将来进化的系统的自动缩放云服务的架构。我们的方法利用时序预测技术,如基于机器学习和人工神经网络的那些,以预测关键指标的未来动态,例如资源消耗度量,并在它们上应用基于阈值的缩放策略。结果是一种预测自动化策略,例如,能够在云应用程序的负载中自动预测峰值,并提前触发适当的缩放操作以适应流量的预期增加。我们将我们的方法称为开源OpenStack组件,它依赖于并扩展,并扩展了Monasca所提供的监控能力,从而增加了可以通过散热或尖林等管制成分来利用的预测度量。我们使用经常性神经网络和多层的Perceptron显示实验结果,作为预测器,与简单的线性回归和传统的非预测自动缩放策略进行比较。但是,所提出的框架允许根据需要轻松定制预测政策。
translated by 谷歌翻译
学习并行计算机性能的问题是在多层处理器的背景下研究的。给定固定的工作负载,需要改变系统配置对性能的影响。从传统上讲,通过AMDAHL定律制定了由于单个资源增强的性能加速。但是,如果有多个可配置的资源,则传统公式会导致几个断开的加速方程,这些方程无法合并在一起以确定整体加速。为了解决这个问题,我们建议(1)将AMDAHL定律扩展到整体加速方程中,并将其适应多个可配置的资源,(2)将加速方程转换为适合机器学习的多变量回归问题。使用跨越两个基准测试(SPECCPU 2017和PCMARK 10)和四个硬件平台(Intel Xeon 8180m,AMD EPYC 7702P,Intel Coffeelake 8700K和AMD Ryzen 3900X)的实验数据,分析模型已开发和交叉攻击。调查结果表明,在大多数情况下,模型导致平均交叉验证准确性高于95%,从而验证了拟议的AMDAHL定律的扩展。提出的方法使快速生成多变量的分析模型能够支持未来的工业发展,优化和仿真需求。
translated by 谷歌翻译
普通交叉验证(CV)等方法,如k倍交叉验证或Monte-Carlo交叉验证估计学习者的预测性能,通过重复在给定数据的大部分数据和对剩余数据上测试的大部分中进行训练。这些技术有两个主要缺点。首先,它们可以在大型数据集上不必要地慢。其次,除了估计最终性能之外,它们几乎没有进入验证算法的学习过程中的见解。在本文中,我们提出了一种基于学习曲线(LCCV)的验证的新方法。 LCCV迭代地增加用于训练的实例数量而不是创建火车测试分裂。在模型选择的背景下,它丢弃了不太可能成为竞争的模型。我们在从自动化基准测试的67个数据集上运行大规模的实验,并经验显示使用LCCV超过90%的案例,导致使用5/10倍的CV相似的性能(最多1.5%)。然而,它平均产生超过20%的大量运行时间减少。此外,它提供了重要的见解,例如允许评估获取更多数据的益处。这些结果与Automl领域的其他进步正交。
translated by 谷歌翻译
输入管道,其摄取和转换输入数据,是培训机器学习(ML)模型的重要组成部分。然而,实现有效的输入管道有挑战性,因为它需要推理有关并行性,异步的推理和细粒度分析信息的可变性。我们对谷歌数据中心超过200万毫升工作的分析表明,大量模型培训工作可以从更快的输入数据管道中受益。与此同时,我们的分析表明,大多数工作都不饱和主机硬件,指向基于软件的瓶颈的方向。这些发现的动机,我们提出了水管工,一种用于在ML输入管道中找到瓶颈的工具。管道工使用可扩展和可解释的操作分析分析模型来自动调整Host资源约束下的并行性,预取和缓存。在五个代表性ML管道上,水管工可获得最多46倍的误配置管道的加速。通过自动化缓存,与最先进的调谐器相比,水管工获得超过40%的端到端加速。
translated by 谷歌翻译
随着智能设备和物联网无处不在的部署的出现,机器学习推断的数据源已越来越多地转移到网络的边缘。现有的机器学习推理平台通常假设一个均匀的基础架构,并且不考虑包括边缘设备,本地集线器,边缘数据中心和云数据中心的更复杂和分层的计算基础架构。另一方面,最近的Automl工作为异质环境提供了可行的解决方案,用于模型压缩,修剪和量化。对于机器学习模型,现在我们可能很容易找到甚至生成一系列在准确性和效率之间进行不同权衡的模型。我们设计和实施Jellybean,这是一种用于服务和优化机器学习推理工作流程的系统。给定的服务级目标(例如,吞吐量,准确性),Jellybean选择了满足准确性目标的最具成本效益的模型,并决定如何在基础架构的不同层次上部署它们。评估表明,与最先进的模型选择和工人分配解决方案相比,Jellybean的视觉问题回答总成本最高可达58%,而NVIDIA AI City Challenge的车辆跟踪最多可达36%。 Jellybean还优于先前的ML服务系统(例如,在云上火花)的服务成本高达5倍。
translated by 谷歌翻译
比较不同的汽车框架是具有挑战性的,并且经常做错了。我们引入了一个开放且可扩展的基准测试,该基准遵循最佳实践,并在比较自动框架时避免常见错误。我们对71个分类和33项回归任务进行了9个著名的自动框架进行了详尽的比较。通过多面分析,评估模型的准确性,与推理时间的权衡以及框架失败,探索了自动框架之间的差异。我们还使用Bradley-terry树来发现相对自动框架排名不同的任务子集。基准配备了一个开源工具,该工具与许多自动框架集成并自动化经验评估过程端到端:从框架安装和资源分配到深入评估。基准测试使用公共数据集,可以轻松地使用其他Automl框架和任务扩展,并且具有最新结果的网站。
translated by 谷歌翻译
石油场和地震成像的储层模拟被称为石油和天然气(O&G)行业中高性能计算(HPC)最苛刻的工作量。模拟器数值参数的优化起着至关重要的作用,因为它可以节省大量的计算工作。最先进的优化技术基于运行大量模拟,特定于该目的,以找到良好的参数候选者。但是,在时间和计算资源方面,使用这种方法的成本高昂。这项工作提出了金枪鱼,这是一种新方法,可增强使用性能模型的储层流仿真的最佳数值参数的搜索。在O&G行业中,通常使用不同工作流程中的模型合奏来减少与预测O&G生产相关的不确定性。我们利用此类工作流程中这些合奏的运行来从每个模拟中提取信息,并在其后续运行中优化数值参数。为了验证该方法,我们在历史匹配(HM)过程中实现了它,该过程使用Kalman滤波器算法来调整储层模型的集合以匹配实际字段中观察到的数据。我们从许多具有不同数值配置的模拟中挖掘了过去的执行日志,并根据数据提取的功能构建机器学习模型。这些功能包括储层模型本身的属性,例如活动单元的数量,即模拟行为的统计数据,例如线性求解器的迭代次数。采样技术用于查询甲骨文以找到可以减少经过的时间的数值参数,而不会显着影响结果的质量。我们的实验表明,预测可以平均将HM工作流程运行时提高31%。
translated by 谷歌翻译
As the number of distributed services (or microservices) of cloud-native applications grows, resource management becomes a challenging task. These applications tend to be user-facing and latency-sensitive, and our goal is to continuously minimize the amount of CPU resources allocated while still satisfying the application latency SLO. Although previous efforts have proposed simple heuristics and sophisticated ML-based techniques, we believe that a practical resource manager should accurately scale CPU resources for diverse applications, with minimum human efforts and operation overheads. To this end, we ask: can we systematically break resource management down to subproblems solvable by practical policies? Based on the notion of CPU-throttle-based performance target, we decouple the mechanisms of SLO feedback and resource control, and implement a two-level framework -- Autothrottle. It combines a lightweight learned controller at the global level, and agile per-microservice controllers at the local level. We evaluate Autothrottle on three microservice applications, with both short-term and 21-day production workload traces. Empirical results show Autothrottle's superior CPU core savings up to 26.21% over the best-performing baselines across applications, while maintaining the latency SLO.
translated by 谷歌翻译
无论是在功能选择的领域还是可解释的AI领域,都有基于其重要性的“排名”功能的愿望。然后可以将这种功能重要的排名用于:(1)减少数据集大小或(2)解释机器学习模型。但是,在文献中,这种特征排名没有以系统的,一致的方式评估。许多论文都有不同的方式来争论哪些具有重要性排名最佳的特征。本文通过提出一种新的评估方法来填补这一空白。通过使用合成数据集,可以事先知道特征重要性得分,从而可以进行更系统的评估。为了促进使用新方法的大规模实验,在Python建造了一个名为FSEVAL的基准测定框架。该框架允许并行运行实验,并在HPC系统上的计算机上分布。通过与名为“权重和偏见”的在线平台集成,可以在实时仪表板上进行交互探索图表。该软件作为开源软件发布,并在PYPI平台上以包裹发行。该研究结束时,探索了一个这样的大规模实验,以在许多方面找到参与算法的优势和劣势。
translated by 谷歌翻译
关键性服务已被广泛部署在云环境中。为了成本效益,通常在服务器上共同介绍多个服务。因此,在这些复杂的共同定位案例中,运行时资源调度成为QoS控制的枢轴。但是,调度勘探空间随着服务器资源的增加而迅速扩大,使调度程序几乎无法迅速提供理想的解决方案。更重要的是,我们观察到计划探索空间中有“资源悬崖”。它们会影响勘探效率,并始终导致严重的QoS波动。在先前的调度程序中,无法轻松避免资源悬崖。为了解决这些问题,我们提出了一种基于ML的新型智能调度程序-OSML。它了解建筑提示(例如,IPC,Cache Misses,内存足迹等)之间的相关性,调度解决方案和QoS需求基于我们从在现成服务器上运行的11个广泛部署的服务中收集的数据集。 OSML采用多个ML模型来协作工作,以预测QoS变化,调整调度以及在复杂的共同定位案例中违反QoS违规行为。 OSML可以在调度期间明智地避免资源悬崖,并比以前的共同定位的LC服务更快地达到最佳解决方案。实验结果表明,与以前的研究相比,OSML支持较高的负载,并符合QoS目标较低的QoS目标,而收敛时间较短。
translated by 谷歌翻译
A learned system uses machine learning (ML) internally to improve performance. We can expect such systems to be vulnerable to some adversarial-ML attacks. Often, the learned component is shared between mutually-distrusting users or processes, much like microarchitectural resources such as caches, potentially giving rise to highly-realistic attacker models. However, compared to attacks on other ML-based systems, attackers face a level of indirection as they cannot interact directly with the learned model. Additionally, the difference between the attack surface of learned and non-learned versions of the same system is often subtle. These factors obfuscate the de-facto risks that the incorporation of ML carries. We analyze the root causes of potentially-increased attack surface in learned systems and develop a framework for identifying vulnerabilities that stem from the use of ML. We apply our framework to a broad set of learned systems under active development. To empirically validate the many vulnerabilities surfaced by our framework, we choose 3 of them and implement and evaluate exploits against prominent learned-system instances. We show that the use of ML caused leakage of past queries in a database, enabled a poisoning attack that causes exponential memory blowup in an index structure and crashes it in seconds, and enabled index users to snoop on each others' key distributions by timing queries over their own keys. We find that adversarial ML is a universal threat against learned systems, point to open research gaps in our understanding of learned-systems security, and conclude by discussing mitigations, while noting that data leakage is inherent in systems whose learned component is shared between multiple parties.
translated by 谷歌翻译
查询优化器是每个数据库系统中的性能关键组件。由于它们的复杂性,优化仪参加专家月份才能编写和多年来优化。在这项工作中,我们首次演示了在不从专家优化器中学习而不学习的情况下进行优化查询是可能的,有效的。我们展示了Balsa,这是一个由深度加强学习建造的查询优化器。Balsa首先从简单的环境不可行的模拟器中了解基本知识,然后在真实执行中安全学习。在加入秩序基准测试中,Balsa符合两个专家查询优化器的性能,包括两个小时的学习,并且在几个小时后占工作负载运行时最多2.8美元\ times $。因此,Balsa打开了自动学习在未来的计算环境中优化的可能性,其中专家设计的优化仪不存在。
translated by 谷歌翻译
本文调查了股票回购,特别是分享回购公告。它解决了如何识别此类公告,股票回购的超额回报以及股票回购公告后的回报的预测。我们说明了两种NLP方法,用于自动检测股票回购公告。即使有少量的培训数据,我们也可以达到高达90%的准确性。该论文利用这些NLP方法生成一个由57,155个股票回购公告组成的大数据集。通过分析该数据集,本论文的目的是表明大多数宣布回购的公司的大多数公司都表现不佳。但是,少数公司的表现极大地超过了MSCI世界。当查看所有公司的平均值时,这种重要的表现过高会导致净收益。如果根据公司的规模调整了基准指数,则平均表现过高,并且大多数表现不佳。但是,发现宣布股票回购的公司至少占其市值的1%,即使使用调整后的基准,也平均交付了显着的表现。还发现,在危机时期宣布股票回购的公司比整个市场更好。此外,生成的数据集用于训练72个机器学习模型。通过此,它能够找到许多可以达到高达77%并产生大量超额回报的策略。可以在六个不同的时间范围内改善各种性能指标,并确定明显的表现。这是通过训练多个模型的不同任务和时间范围以及结合这些不同模型的方法来实现的,从而通过融合弱学习者来产生重大改进,以创造一个强大的学习者。
translated by 谷歌翻译
培训深神经网络(DNNS)在企业和云数据中心都广受欢迎。现有的DNN培训调度程序将GPU视为主要资源,并分配其他资源,例如CPU和内存与作业要求的GPU数量成正比。不幸的是,这些调度程序不考虑作业对CPU,内存和存储资源分配的敏感性的影响。在这项工作中,我们提出了Synergy,这是一种对共享GPU群集的资源敏感调度程序。通过乐观的分析,协同作用侵犯了DNN对不同资源的敏感性;某些工作可能会从GPU育儿分配中受益更多,而某些工作可能不会受到GPU育儿分配的影响。 Synergy使用新的近乎最佳的在线算法在共享的多租户集群上安排的一组作业进行了多余的工作量感知作业。我们的实验表明,与传统的GPU育儿计划相比,工作量感知的CPU和内存分配可以提高平均JCT高达3.4倍。
translated by 谷歌翻译
我们为AI驱动数据库提供了一个SYSML框架。使用Baihe,可能会改装现有的关系数据库系统以使用学习组件进行查询优化或其他常见任务,例如例如,学习索引结构。为确保Baihe的实用性和现实世界适用性,其高级架构基于以下要求:与核心系统的分离,最小的第三方依赖,鲁棒性,稳定性和容错,以及稳定性和可配置性。基于高级架构,我们将描述Baihe的具体实现PostgreSQL,并为学习查询优化器提供了实例使用情况。为了服务于从业者,以及DB和AI4DB社区的研究人员将在开源许可下发布PostgreSQL的Baihe。
translated by 谷歌翻译
Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. A dedicated venue for collecting and summarizing the latest advances of EVA is highly desired by the community. Besides, the basic concepts of EVA (e.g., definition, architectures, etc.) are ambiguous and neglected by these surveys due to the rapid development of this domain. A thorough clarification is needed to facilitate a consensus on these concepts. To fill in these gaps, we conduct a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.
translated by 谷歌翻译
转移学习可以看作是从头开始的数据和计算效率替代培训模型的替代方法。丰富的模型存储库(例如TensorFlow Hub)的出现使从业人员和研究人员能够在各种下游任务中释放这些模型的潜力。随着这些存储库的成倍增长,有效地为手头任务选择一个好的模型变得至关重要。通过仔细比较各种选择和搜索策略,我们意识到,没有一种方法优于其他方法,而混合或混合策略可以是有益的。因此,我们提出了Shift,这是用于转移学习的第一个下游任务感知,灵活和有效的模型搜索引擎。这些属性由自定义查询语言shift-ql以及基于成本的决策者以及我们经验验证的基于成本的决策者启用。受机器学习开发的迭代性质的促进,我们进一步支持对查询的有效递增执行,这需要与我们的优化共同使用时进行仔细的实施。
translated by 谷歌翻译