近年来,道路安全引起了智能运输系统领域的研究人员和从业者的重大关注。作为最常见的道路用户群体之一,行人由于其不可预测的行为和运动而导致令人震惊,因为车辆行人互动的微妙误解可以很容易地导致风险的情况或碰撞。现有方法使用预定义的基于碰撞的模型或人类标签方法来估计行人的风险。这些方法通常受到他们的概括能力差,缺乏对自我车辆和行人之间的相互作用的限制。这项工作通过提出行人风险级预测系统来解决所列问题。该系统由三个模块组成。首先,收集车辆角度的行人数据。由于数据包含关于自我车辆和行人的运动的信息,因此可以简化以交互感知方式预测时空特征的预测。使用长短短期存储器模型,行人轨迹预测模块预测后续五个框架中的时空特征。随着预测的轨迹遵循某些交互和风险模式,采用混合聚类和分类方法来探讨时空特征中的风险模式,并使用学习模式训练风险等级分类器。在预测行人的时空特征并识别相应的风险水平时,确定自我车辆和行人之间的风险模式。实验结果验证了PRLP系统的能力,以预测行人的风险程度,从而支持智能车辆的碰撞风险评估,并为车辆和行人提供安全警告。
translated by 谷歌翻译
本文为可以提取车辆间交互的自治车辆提供特定于自主车辆的驾驶员风险识别框架。在驾驶员认知方式下对城市驾驶场景进行了这种提取,以提高风险场景的识别准确性。首先,将群集分析应用于驱动程序的操作数据,以学习不同驱动程序风险场景的主观评估,并为每个场景生成相应的风险标签。其次,采用图形表示模型(GRM)统一和构建动态车辆,车间交互和静态交通标记的实际驾驶场景中的特征。驾驶员特定的风险标签提供了实践,以捕获不同司机的风险评估标准。此外,图形模型表示驾驶场景的多个功能。因此,所提出的框架可以了解不同驱动程序的驾驶场景的风险评估模式,并建立特定于驱动程序的风险标识符。最后,通过使用由多个驱动程序收集的现实世界城市驾驶数据集进行的实验评估所提出的框架的性能。结果表明,建议的框架可以准确地识别实际驾驶环境中的风险及其水平。
translated by 谷歌翻译
自动驾驶汽车使用各种传感器和机器学习型号来预测周围道路使用者的行为。文献中的大多数机器学习模型都集中在定量误差指标上,例如均方根误差(RMSE),以学习和报告其模型的功能。对定量误差指标的关注倾向于忽略模型的更重要的行为方面,从而提出了这些模型是否真正预测类似人类行为的问题。因此,我们建议分析机器学习模型的输出,就像我们将在常规行为研究中分析人类数据一样。我们介绍定量指标,以证明在自然主义高速公路驾驶数据集中存在三种不同的行为现象:1)运动学依赖性谁通过合并点首次通过合并点2)巷道上的车道更改,可容纳坡道车辆3 )车辆通过高速公路上的车辆变化,以避免铅车冲突。然后,我们使用相同的指标分析了三个机器学习模型的行为。即使模型的RMSE值有所不同,所有模型都捕获了运动学依赖性的合并行为,但在不同程度上挣扎着捕获更细微的典型礼貌车道变更和高速公路车道的变化行为。此外,车道变化期间的碰撞厌恶分析表明,模型努力捕获人类驾驶的物理方面:在车辆之间留下足够的差距。因此,我们的分析强调了简单的定量指标不足,并且在分析人类驾驶预测的机器学习模型时需要更广泛的行为观点。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
在公共道路上大规模的自动车辆部署有可能大大改变当今社会的运输方式。尽管这种追求是在几十年前开始的,但仍有公开挑战可靠地确保此类车辆在开放环境中安全运行。尽管功能安全性是一个完善的概念,但测量车辆行为安全的问题仍然需要研究。客观和计算分析交通冲突的一种方法是开发和利用所谓的关键指标。在与自动驾驶有关的各种应用中,当代方法利用了关键指标的潜力,例如用于评估动态风险或过滤大型数据集以构建方案目录。作为系统地选择适当的批判性指标的先决条件,我们在自动驾驶的背景下广泛回顾了批判性指标,其属性及其应用的现状。基于这篇综述,我们提出了一种适合性分析,作为一种有条不紊的工具,可以由从业者使用。然后,可以利用提出的方法和最新审查的状态来选择涵盖应用程序要求的合理的测量工具,如分析的示例性执行所证明。最终,高效,有效且可靠的衡量自动化车辆安全性能是证明其可信赖性的关键要求。
translated by 谷歌翻译
由于行人涉及的撞车事故的数量增加,行人安全已成为各种研究的重要研究主题。为了主动评估行人安全,替代安全措施(SSM)已被广泛用于基于交通冲突的研究中,因为它们不需要历史崩溃作为输入。但是,大多数现有的SSM是根据道路使用者保持恒定速度和方向的假设而开发的。基于此假设的风险估计较不稳定,更可能被夸大,并且无法捕获驾驶员的回避操作。考虑到现有SSM之间的局限性,本研究提出了一个概率框架,用于估计十字路口处行人车的风险。提出的框架通过使用高斯过程回归预测轨迹,并通过随机森林模型来解释不同可能的驱动器操纵,从而放大了恒定速度的限制。在十字路口收集的现实世界激光雷达数据用于评估所提出的框架的性能。新开发的框架能够识别所有行人车的冲突。与收集时间相比,提议的框架提供了更稳定的风险估计,并捕获了汽车的回避操作。此外,提议的框架不需要昂贵的计算资源,这使其成为交叉点实时主动行人安全解决方案的理想选择。
translated by 谷歌翻译
这项工作提出了一种新的方法,可以使用有效的鸟类视图表示和卷积神经网络在高速公路场景中预测车辆轨迹。使用基本的视觉表示,很容易将车辆位置,运动历史,道路配置和车辆相互作用轻松包含在预测模型中。 U-NET模型已被选为预测内核,以使用图像到图像回归方法生成场景的未来视觉表示。已经实施了一种方法来从生成的图形表示中提取车辆位置以实现子像素分辨率。该方法已通过预防数据集(一个板载传感器数据集)进行了培训和评估。已经评估了不同的网络配置和场景表示。这项研究发现,使用线性终端层和车辆的高斯表示,具有6个深度水平的U-NET是最佳性能配置。发现使用车道标记不会改善预测性能。平均预测误差为0.47和0.38米,对于纵向和横向坐标的最终预测误差分别为0.76和0.53米,预测轨迹长度为2.0秒。与基线方法相比,预测误差低至50%。
translated by 谷歌翻译
应用强化学习来自动驾驶需要某些挑战,这主要是由于大规模的交通流动,这种挑战是动态变化的。为了应对此类挑战,有必要快速确定对周围车辆不断变化的意图的响应策略。因此,我们提出了一种新的政策优化方法,用于使用基于图的互动感知约束来安全驾驶。在此框架中,运动预测和控制模块是同时训练的,同时共享包含社会环境的潜在表示。此外,为了反映社交互动,我们以图形形式表达了代理的运动并过滤特征。这有助于保留相邻节点的时空位置。此外,我们创建反馈循环以有效地组合这两个模块。结果,这种方法鼓励博学的控制器免受动态风险的侵害,并在各种情况下使运动预测强大。在实验中,我们与城市驾驶模拟器Carla建立了一个包括各种情况的导航场景。该实验表明,与基线相比,导航策略和运动预测的两侧的最新性能。
translated by 谷歌翻译
“轨迹”是指由地理空间中的移动物体产生的迹线,通常由一系列按时间顺序排列的点表示,其中每个点由地理空间坐标集和时间戳组成。位置感应和无线通信技术的快速进步使我们能够收集和存储大量的轨迹数据。因此,许多研究人员使用轨迹数据来分析各种移动物体的移动性。在本文中,我们专注于“城市车辆轨迹”,这是指城市交通网络中车辆的轨迹,我们专注于“城市车辆轨迹分析”。城市车辆轨迹分析提供了前所未有的机会,可以了解城市交通网络中的车辆运动模式,包括以用户为中心的旅行经验和系统范围的时空模式。城市车辆轨迹数据的时空特征在结构上相互关联,因此,许多先前的研究人员使用了各种方法来理解这种结构。特别是,由于其强大的函数近似和特征表示能力,深度学习模型是由于许多研究人员的注意。因此,本文的目的是开发基于深度学习的城市车辆轨迹分析模型,以更好地了解城市交通网络的移动模式。特别是,本文重点介绍了两项研究主题,具有很高的必要性,重要性和适用性:下一个位置预测,以及合成轨迹生成。在这项研究中,我们向城市车辆轨迹分析提供了各种新型模型,使用深度学习。
translated by 谷歌翻译
交叉点是自主行驶中最复杂和事故的城市场景之一,其中制造安全和计算有效的决策是非微不足道的。目前的研究主要关注简化的交通状况,同时忽略了混合交通流量的存在,即车辆,骑自行车者和行人。对于城市道路而言,不同的参与者导致了一个非常动态和复杂的互动,从而冒着学习智能政策的困难。本文在集成决策和控制框架中开发动态置换状态表示,以处理与混合业务流的信号化交集。特别地,该表示引入了编码功能和总和运算符,以构建来自环境观察的驱动状态,能够处理不同类型和变体的交通参与者。构建了受约束的最佳控制问题,其中目标涉及跟踪性能,并且不同参与者和信号灯的约束分别设计以确保安全性。我们通过离线优化编码函数,值函数和策略函数来解决这个问题,其中编码函数给出合理的状态表示,然后用作策略和值函数的输入。禁止策略培训旨在重用从驾驶环境中的观察,并且使用时间通过时间来利用策略函数和编码功能联合。验证结果表明,动态置换状态表示可以增强IDC的驱动性能,包括具有大边距的舒适性,决策合规性和安全性。训练有素的驾驶政策可以实现复杂交叉口的高效和平滑通过,同时保证驾驶智能和安全性。
translated by 谷歌翻译
Figure 1: We introduce datasets for 3D tracking and motion forecasting with rich maps for autonomous driving. Our 3D tracking dataset contains sequences of LiDAR measurements, 360 • RGB video, front-facing stereo (middle-right), and 6-dof localization. All sequences are aligned with maps containing lane center lines (magenta), driveable region (orange), and ground height. Sequences are annotated with 3D cuboid tracks (green). A wider map view is shown in the bottom-right.
translated by 谷歌翻译
研究表明,自治车辆(AVS)在由人类驱动因素组成的交通环境中保守,不适应当地条件和社会文化规范。众所周知,如果存在理解人类驱动程序的行为,则可以设计社会意识的AVS。我们提出了一种利用机器学习来预测人类驱动程序的行为的方法。这类似于人类如何隐含地解释道路上司机的行为,只能观察其车辆的轨迹。我们使用图形理论工具从轨迹和机器学习中提取驾驶员行为特征,以在流量和驾驶员行为中获得车辆的提取轨迹之间的计算映射。与此域中的现有方法相比,我们证明我们的方法是强大的,一般的,并且可扩展到广泛的应用程序,如自主导航。我们评估我们在美国,印度,中国和新加坡捕获的现实世界交通数据集以及模拟中的方法。
translated by 谷歌翻译
在由车辆安装的仪表板摄像机捕获的视频中检测危险交通代理(仪表板)对于促进在复杂环境中的安全导航至关重要。与事故相关的视频只是驾驶视频大数据的一小部分,并且瞬态前的事故流程具有高度动态和复杂性。此外,风险和非危险交通代理的外观可能相似。这些使驾驶视频中的风险对象本地化特别具有挑战性。为此,本文提出了一个注意力引导的多式功能融合网络(AM-NET),以将仪表板视频的危险交通代理本地化。两个封闭式复发单元(GRU)网络使用对象边界框和从连续视频帧中提取的光流功能来捕获时空提示,以区分危险交通代理。加上GRUS的注意力模块学会了与事故相关的交通代理。融合了两个功能流,AM-NET预测了视频中交通代理的风险评分。在支持这项研究的过程中,本文还引入了一个名为“风险对象本地化”(ROL)的基准数据集。该数据集包含带有事故,对象和场景级属性的空间,时间和分类注释。拟议的AM-NET在ROL数据集上实现了85.73%的AUC的有希望的性能。同时,AM-NET在DOTA数据集上优于视频异常检测的当前最新视频异常检测。一项彻底的消融研究进一步揭示了AM-NET通过评估其不同组成部分的贡献的优点。
translated by 谷歌翻译
通常根据历史崩溃数据来实践道路的风险评估。有时缺少有关驾驶员行为和实时交通情况的信息。在本文中,安全的路线映射(SRM)模型是一种开发道路动态风险热图的方法,可扩展在做出预测时考虑驾驶员行为。 Android应用程序旨在收集驱动程序的信息并将其上传到服务器。在服务器上,面部识别提取了驱动程序的数据,例如面部地标,凝视方向和情绪。检测到驾驶员的嗜睡和分心,并评估驾驶性能。同时,动态的流量信息由路边摄像头捕获并上传到同一服务器。采用基于纵向扫描的动脉交通视频分析来识别视频中的车辆以建立速度和轨迹概况。基于这些数据,引入了LightGBM模型,以预测接下来一两秒钟的驾驶员的冲突指数。然后,使用模糊逻辑模型合并了多个数据源,包括历史崩溃计数和预测的交通冲突指标,以计算道路细分的风险评分。使用从实际的交通交叉点和驾驶模拟平台收集的数据来说明所提出的SRM模型。预测结果表明该模型是准确的,并且增加的驱动程序行为功能将改善模型的性能。最后,为可视化目的而生成风险热图。当局可以使用动态热图来指定安全的走廊,并调度执法部门以及驱动程序,以预警和行程计划。
translated by 谷歌翻译
Proper functioning of connected and automated vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. Thus, collaboration decision-making for CAVs is essential to generate appropriate driving behaviors to enhance the safety and efficiency of mixed autonomy traffic. In recent years, deep reinforcement learning (DRL) has been widely used in solving decision-making problems. However, the existing DRL-based methods have been mainly focused on solving the decision-making of a single CAV. Using the existing DRL-based methods in mixed autonomy traffic cannot accurately represent the mutual effects of vehicles and model dynamic traffic environments. To address these shortcomings, this article proposes a graph reinforcement learning (GRL) approach for multi-agent decision-making of CAVs in mixed autonomy traffic. First, a generic and modular GRL framework is designed. Then, a systematic review of DRL and GRL methods is presented, focusing on the problems addressed in recent research. Moreover, a comparative study on different GRL methods is further proposed based on the designed framework to verify the effectiveness of GRL methods. Results show that the GRL methods can well optimize the performance of multi-agent decision-making for CAVs in mixed autonomy traffic compared to the DRL methods. Finally, challenges and future research directions are summarized. This study can provide a valuable research reference for solving the multi-agent decision-making problems of CAVs in mixed autonomy traffic and can promote the implementation of GRL-based methods into intelligent transportation systems. The source code of our work can be found at https://github.com/Jacklinkk/Graph_CAVs.
translated by 谷歌翻译
自主系统(AS)越来越多地提出或在安全关键(SC)应用中使用,例如公路车辆。许多这样的系统利用复杂的传感器套件和处理来提供场景理解,从而使“决策”(例如路径计划)提供了信息。传感器处理通常利用机器学习(ML),并且必须在具有挑战性的环境中工作,此外,ML算法具有已知的局限性,例如,对象分类中错误的负面因素或假阳性的可能性。为常规SC系统开发的完善的安全分析方法与AS使用的AS,ML或传感系统没有很好的匹配。本文提出了适应良好的安全分析方法的适应,以解决AS的传感系统的细节,包括解决环境效应和ML的潜在故障模式,并为选择特定的指南或提示集提供了理由。安全分析。它继续展示了如何使用分析结果来告知AS系统的设计和验证,并通过对移动机器人进行部分分析来说明新方法。本文中的插图主要基于光学传感,但是本文讨论了该方法对其他感应方式的适用性及其在更广泛的安全过程中的作用,以解决AS的整体功能
translated by 谷歌翻译
Recently, numerous studies have investigated cooperative traffic systems using the communication among vehicle-to-everything (V2X). Unfortunately, when multiple autonomous vehicles are deployed while exposed to communication failure, there might be a conflict of ideal conditions between various autonomous vehicles leading to adversarial situation on the roads. In South Korea, virtual and real-world urban autonomous multi-vehicle races were held in March and November of 2021, respectively. During the competition, multiple vehicles were involved simultaneously, which required maneuvers such as overtaking low-speed vehicles, negotiating intersections, and obeying traffic laws. In this study, we introduce a fully autonomous driving software stack to deploy a competitive driving model, which enabled us to win the urban autonomous multi-vehicle races. We evaluate module-based systems such as navigation, perception, and planning in real and virtual environments. Additionally, an analysis of traffic is performed after collecting multiple vehicle position data over communication to gain additional insight into a multi-agent autonomous driving scenario. Finally, we propose a method for analyzing traffic in order to compare the spatial distribution of multiple autonomous vehicles. We study the similarity distribution between each team's driving log data to determine the impact of competitive autonomous driving on the traffic environment.
translated by 谷歌翻译
Autonomous vehicles currently suffer from a time-inefficient driving style caused by uncertainty about human behavior in traffic interactions. Accurate and reliable prediction models enabling more efficient trajectory planning could make autonomous vehicles more assertive in such interactions. However, the evaluation of such models is commonly oversimplistic, ignoring the asymmetric importance of prediction errors and the heterogeneity of the datasets used for testing. We examine the potential of recasting interactions between vehicles as gap acceptance scenarios and evaluating models in this structured environment. To that end, we develop a framework facilitating the evaluation of any model, by any metric, and in any scenario. We then apply this framework to state-of-the-art prediction models, which all show themselves to be unreliable in the most safety-critical situations.
translated by 谷歌翻译
行人意图预测问题是估计目标行人是否会过马路。最先进的方法在很大程度上依赖于使用自我车辆的前置摄像头收集的视觉信息来预测行人的意图。因此,当视觉信息不准确时,例如,当行人和自我车辆之间的距离远处或照明条件不够好时,现有方法的性能会显着降低。在本文中,我们根据与行人的智能手表(或智能手机)收集的运动传感器数据的集成,设计,实施和评估第一个行人意图预测模型。提出了一种新型的机器学习体系结构,以有效地合并运动传感器数据,以加强视觉信息,以显着改善视觉信息可能不可靠的不利情况的性能。我们还进行了大规模的数据收集,并介绍了与时间同步运动传感器数据集成的第一个行人意图预测数据集。该数据集由总共128个视频剪辑组成,这些视频片段具有不同的距离和不同级别的照明条件。我们使用广泛使用的JAAD和我们自己的数据集训练了模型,并将性能与最先进的模型进行了比较。结果表明,我们的模型优于最新方法,特别是当行人的距离远(超过70m)并且照明条件不足时。
translated by 谷歌翻译
我们解决了由具有不同驱动程序行为的道路代理人填充的密集模拟交通环境中的自我车辆导航问题。由于其异构行为引起的代理人的不可预测性,这种环境中的导航是挑战。我们提出了一种新的仿真技术,包括丰富现有的交通模拟器,其具有与不同程度的侵略性程度相对应的行为丰富的轨迹。我们在驾驶员行为建模算法的帮助下生成这些轨迹。然后,我们使用丰富的模拟器培训深度加强学习(DRL)策略,包括一组高级车辆控制命令,并在测试时间使用此策略来执行密集流量的本地导航。我们的政策隐含地模拟了交通代理商之间的交互,并计算了自助式驾驶员机动,例如超速,超速,编织和突然道路变化的激进驾驶员演习的安全轨迹。我们增强的行为丰富的模拟器可用于生成由对应于不同驱动程序行为和流量密度的轨迹组成的数据集,我们的行为的导航方案可以与最先进的导航算法相结合。
translated by 谷歌翻译