我们考虑使用梯度下降来最大程度地减少$ f(x)= \ phi(xx^{t})$在$ n \ times r $因件矩阵$ x $上,其中$ \ phi是一种基础平稳凸成本函数定义了$ n \ times n $矩阵。虽然只能在合理的时间内发现只有二阶固定点$ x $,但如果$ x $的排名不足,则其排名不足证明其是全球最佳的。这种认证全球最优性的方式必然需要当前迭代$ x $的搜索等级$ r $,以相对于级别$ r^{\ star} $过度参数化。不幸的是,过度参数显着减慢了梯度下降的收敛性,从$ r = r = r = r^{\ star} $的线性速率到$ r> r> r> r> r^{\ star} $,即使$ \ phi $是$ \ phi $强烈凸。在本文中,我们提出了一项廉价的预处理,该预处理恢复了过度参数化的情况下梯度下降回到线性的收敛速率,同时也使在全局最小化器$ x^{\ star} $中可能不良条件变得不可知。
translated by 谷歌翻译
我们考虑最大程度地减少两次不同的可差异,$ l $ -smooth和$ \ mu $ -stronglongly凸面目标$ \ phi $ phi $ a $ n \ times n $ n $阳性阳性半finite $ m \ succeq0 $,在假设是最小化的假设$ m^{\ star} $具有低等级$ r^{\ star} \ ll n $。遵循burer- monteiro方法,我们相反,在因子矩阵$ x $ size $ n \ times r $的因素矩阵$ x $上最小化nonconvex objection $ f(x)= \ phi(xx^{t})$。这实际上将变量的数量从$ o(n^{2})$减少到$ O(n)$的少量,并且免费实施正面的半弱点,但要付出原始问题的均匀性。在本文中,我们证明,如果搜索等级$ r \ ge r^{\ star} $被相对于真等级$ r^{\ star} $的常数因子过度参数化,则如$ r> \ in frac {1} {4}(l/\ mu-1)^{2} r^{\ star} $,尽管非概念性,但保证本地优化可以从任何初始点转换为全局最佳。这显着改善了先前的$ r \ ge n $的过度参数化阈值,如果允许$ \ phi $是非平滑和/或非额外凸的,众所周知,这将是尖锐的,但会增加变量的数量到$ o(n^{2})$。相反,没有排名过度参数化,我们证明只有$ \ phi $几乎完美地条件,并且条件数量为$ l/\ mu <3 $,我们才能证明这种全局保证是可能的。因此,我们得出的结论是,少量的过度参数化可能会导致非凸室的理论保证得到很大的改善 - 蒙蒂罗分解。
translated by 谷歌翻译
This paper shows that a perturbed form of gradient descent converges to a second-order stationary point in a number iterations which depends only poly-logarithmically on dimension (i.e., it is almost "dimension-free"). The convergence rate of this procedure matches the wellknown convergence rate of gradient descent to first-order stationary points, up to log factors. When all saddle points are non-degenerate, all second-order stationary points are local minima, and our result thus shows that perturbed gradient descent can escape saddle points almost for free.Our results can be directly applied to many machine learning applications, including deep learning. As a particular concrete example of such an application, we show that our results can be used directly to establish sharp global convergence rates for matrix factorization. Our results rely on a novel characterization of the geometry around saddle points, which may be of independent interest to the non-convex optimization community.
translated by 谷歌翻译
矩阵的完成问题旨在从对其个别元素的观察中恢复低级$ r \ ll d $的$ d \ times d $地面真相矩阵。现实世界中的矩阵完成通常是一个巨大的优化问题,$ d $如此之大,以至于即使是$ O(d)$ o(d)$ o(d)$ o(d)$ o(d)$ o(d)$ o(d)$ o(d)$ o(d)$ o(d)$ o(d)$ o(d)$ o(d)$ d $的昂贵。随机梯度下降(SGD)是少数能够大规模求解矩阵完成的算法之一,也可以自然地通过不断发展的地面真相处理流数据。不幸的是,当底层地面真理不足时,SGD经历了戏剧性的减速。它至少需要$ o(\ kappa \ log(1/\ epsilon))$迭代才能获得$ \ epsilon $ -close $ \ epsilon $ -Close以接地真相矩阵,条件号$ \ kappa $。在本文中,我们提出了一个预处理的SGD版本,该版本保留了SGD的所有有利的实践素质用于大规模的在线优化,同时也使其不可知到$ \ kappa $。对于对称地面真相和根平方错误(RMSE)损失,我们证明预处理的SGD收敛到$ \ epsilon $ -Accuracy in $ o(\ log(1/\ epsilon))$ tererations $迭代,并具有快速的线性线性融合率好像地面真相是完美的条件,$ \ kappa = 1 $。在我们的数值实验中,我们观察到在1位跨透明拷贝损失下进行的不条件矩阵完成的加速度,以及贝叶斯个性化排名(BPR)损失等成对损失。
translated by 谷歌翻译
最近以来,在理解与overparameterized模型非凸损失基于梯度的方法收敛性和泛化显著的理论进展。尽管如此,优化和推广,尤其是小的随机初始化的关键作用的许多方面都没有完全理解。在本文中,我们迈出玄机通过证明小的随机初始化这个角色的步骤,然后通过梯度下降的行为类似于流行谱方法的几个迭代。我们还表明,从小型随机初始化,这可证明是用于overparameterized车型更加突出这种隐含的光谱偏差,也使梯度下降迭代在一个特定的轨迹走向,不仅是全局最优的,但也很好期广义的解决方案。具体而言,我们专注于通过天然非凸制剂重构从几个测量值的低秩矩阵的问题。在该设置中,我们表明,从小的随机初始化的梯度下降迭代的轨迹可以近似分解为三个阶段:(Ⅰ)的光谱或对准阶段,其中,我们表明,该迭代具有一个隐含的光谱偏置类似于频谱初始化允许我们表明,在该阶段中进行迭代,并且下面的低秩矩阵的列空间被充分对准的端部,(II)一鞍回避/细化阶段,我们表明,该梯度的轨迹从迭代移动离开某些简并鞍点,和(III)的本地细化阶段,其中,我们表明,避免了鞍座后的迭代快速收敛到底层低秩矩阵。底层我们的分析是,可能有超出低等级的重建计算问题影响overparameterized非凸优化方案的分析见解。
translated by 谷歌翻译
诸如压缩感测,图像恢复,矩阵/张恢复和非负矩阵分子等信号处理和机器学习中的许多近期问题可以作为约束优化。预计的梯度下降是一种解决如此约束优化问题的简单且有效的方法。本地收敛分析将我们对解决方案附近的渐近行为的理解,与全球收敛分析相比,收敛率的较小界限提供了较小的界限。然而,本地保证通常出现在机器学习和信号处理的特定问题领域。此稿件在约束最小二乘范围内,对投影梯度下降的局部收敛性分析提供了统一的框架。该建议的分析提供了枢转局部收敛性的见解,例如线性收敛的条件,收敛区域,精确的渐近收敛速率,以及达到一定程度的准确度所需的迭代次数的界限。为了证明所提出的方法的适用性,我们介绍了PGD的收敛分析的配方,并通过在四个基本问题上的配方的开始延迟应用来证明它,即线性约束最小二乘,稀疏恢复,最小二乘法使用单位规范约束和矩阵完成。
translated by 谷歌翻译
我们考虑凸优化问题,这些问题被广泛用作低级基质恢复问题的凸松弛。特别是,在几个重要问题(例如相位检索和鲁棒PCA)中,在许多情况下的基本假设是最佳解决方案是排名一列。在本文中,我们考虑了目标上的简单自然的条件,以使这些放松的最佳解决方案确实是独特的,并且是一个排名。主要是,我们表明,在这种情况下,使用线路搜索的标准Frank-Wolfe方法(即,没有任何参数调整),该方法仅需要单个排名一级的SVD计算,可以找到$ \ epsilon $ - 仅在$ o(\ log {1/\ epsilon})$迭代(而不是以前最著名的$ o(1/\ epsilon)$)中的近似解决方案,尽管目的不是强烈凸。我们考虑了基本方法的几种变体,具有改善的复杂性,以及由强大的PCA促进的扩展,最后是对非平滑问题的扩展。
translated by 谷歌翻译
对于光滑的强凸目标,梯度下降的经典理论可确保相对于梯度评估的数量的线性收敛。一个类似的非球形理论是具有挑战性的:即使目标在每一次迭代的目标流畅时,相应的本地模型也是不稳定的,传统的补救措施需要不可预测的许多切割平面。我们提出了对局部优化的梯度下降迭代的多点概括。虽然设计了一般目标,但我们受到“最大平滑”模型的动机,可在最佳状态下捕获子样本维度。当目标本身自象最大的情况时,我们证明了线性融合,并且实验表明了更普遍的现象。
translated by 谷歌翻译
通过在线规范相关性分析的问题,我们提出了\ emph {随机缩放梯度下降}(SSGD)算法,以最小化通用riemannian歧管上的随机功能的期望。 SSGD概括了投影随机梯度下降的思想,允许使用缩放的随机梯度而不是随机梯度。在特殊情况下,球形约束的特殊情况,在广义特征向量问题中产生的,我们建立了$ \ sqrt {1 / t} $的令人反感的有限样本,并表明该速率最佳最佳,直至具有积极的积极因素相关参数。在渐近方面,一种新的轨迹平均争论使我们能够实现局部渐近常态,其速率与鲁普特 - Polyak-Quaditsky平均的速率匹配。我们将这些想法携带在一个在线规范相关分析,从事文献中的第一次获得了最佳的一次性尺度算法,其具有局部渐近融合到正常性的最佳一次性尺度算法。还提供了用于合成数据的规范相关分析的数值研究。
translated by 谷歌翻译
我们提供了新的基于梯度的方法,以便有效解决广泛的病态化优化问题。我们考虑最小化函数$ f:\ mathbb {r} ^ d \ lightarrow \ mathbb {r} $的问题,它是隐含的可分解的,作为$ m $未知的非交互方式的总和,强烈的凸起功能并提供方法这解决了这个问题,这些问题是缩放(最快的对数因子)作为组件的条件数量的平方根的乘积。这种复杂性绑定(我们证明几乎是最佳的)可以几乎指出的是加速梯度方法的几乎是指数的,这将作为$ F $的条件数量的平方根。此外,我们提供了求解该多尺度优化问题的随机异标变体的有效方法。而不是学习$ F $的分解(这将是过度昂贵的),而是我们的方法应用一个清洁递归“大步小步”交错标准方法。由此产生的算法使用$ \ tilde {\ mathcal {o}}(d m)$空间,在数字上稳定,并打开门以更细粒度的了解凸优化超出条件号的复杂性。
translated by 谷歌翻译
在深度学习中的优化分析是连续的,专注于(变体)梯度流动,或离散,直接处理(变体)梯度下降。梯度流程可符合理论分析,但是风格化并忽略计算效率。它代表梯度下降的程度是深度学习理论的一个开放问题。目前的论文研究了这个问题。将梯度下降视为梯度流量初始值问题的近似数值问题,发现近似程度取决于梯度流动轨迹周围的曲率。然后,我们表明,在具有均匀激活的深度神经网络中,梯度流动轨迹享有有利的曲率,表明它们通过梯度下降近似地近似。该发现允许我们将深度线性神经网络的梯度流分析转换为保证梯度下降,其几乎肯定会在随机初始化下有效地收敛到全局最小值。实验表明,在简单的深度神经网络中,具有传统步长的梯度下降确实接近梯度流。我们假设梯度流动理论将解开深入学习背后的奥秘。
translated by 谷歌翻译
低秩矩阵恢复的现有结果在很大程度上专注于二次损失,这享有有利的性质,例如限制强的强凸/平滑度(RSC / RSM)以及在所有低等级矩阵上的良好调节。然而,许多有趣的问题涉及更一般,非二次损失,这不满足这些属性。对于这些问题,标准的非耦合方法,例如秩约为秩约为预定的梯度下降(A.K.A.迭代硬阈值)和毛刺蒙特罗分解可能具有差的经验性能,并且没有令人满意的理论保证了这些算法的全球和快速收敛。在本文中,我们表明,具有非二次损失的可证实低级恢复中的关键组成部分是规律性投影oracle。该Oracle限制在适当的界限集中迭代到低级矩阵,损耗功能在其上表现良好并且满足一组近似RSC / RSM条件。因此,我们分析配备有这样的甲骨文的(平均)投影的梯度方法,并证明它在全球和线性地收敛。我们的结果适用于广泛的非二次低级估计问题,包括一个比特矩阵感测/完成,个性化排名聚集,以及具有等级约束的更广泛的广义线性模型。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
Cohen等人的深度学习实验。 [2021]使用确定性梯度下降(GD)显示学习率(LR)和清晰度(即Hessian最大的特征值)的稳定边缘(EOS)阶段不再像传统优化一样行为。清晰度稳定在$ 2/$ LR的左右,并且在迭代中损失不断上下,但仍有整体下降趋势。当前的论文数学分析了EOS阶段中隐式正则化的新机制,因此,由于非平滑损失景观而导致的GD更新沿着最小损失的多种流量进行了一些确定性流程发展。这与许多先前关于隐式偏差依靠无限更新或梯度中的噪声的结果相反。正式地,对于具有某些规律性条件的任何平滑函数$ l $,对于(1)标准化的GD,即具有不同的lr $ \ eta_t = \ frac {\ eta} {||的GD证明了此效果。 \ nabla l(x(t))||} $和损失$ l $; (2)具有常数LR和损失$ \ sqrt {l- \ min_x l(x)} $的GD。两者都可以证明进入稳定性的边缘,在歧管上相关的流量最小化$ \ lambda_ {1}(\ nabla^2 l)$。一项实验研究证实了上述理论结果。
translated by 谷歌翻译
We consider minimizing a smooth and strongly convex objective function using a stochastic Newton method. At each iteration, the algorithm is given an oracle access to a stochastic estimate of the Hessian matrix. The oracle model includes popular algorithms such as Subsampled Newton and Newton Sketch. Despite using second-order information, these existing methods do not exhibit superlinear convergence, unless the stochastic noise is gradually reduced to zero during the iteration, which would lead to a computational blow-up in the per-iteration cost. We propose to address this limitation with Hessian averaging: instead of using the most recent Hessian estimate, our algorithm maintains an average of all the past estimates. This reduces the stochastic noise while avoiding the computational blow-up. We show that this scheme exhibits local $Q$-superlinear convergence with a non-asymptotic rate of $(\Upsilon\sqrt{\log (t)/t}\,)^{t}$, where $\Upsilon$ is proportional to the level of stochastic noise in the Hessian oracle. A potential drawback of this (uniform averaging) approach is that the averaged estimates contain Hessian information from the global phase of the method, i.e., before the iterates converge to a local neighborhood. This leads to a distortion that may substantially delay the superlinear convergence until long after the local neighborhood is reached. To address this drawback, we study a number of weighted averaging schemes that assign larger weights to recent Hessians, so that the superlinear convergence arises sooner, albeit with a slightly slower rate. Remarkably, we show that there exists a universal weighted averaging scheme that transitions to local convergence at an optimal stage, and still exhibits a superlinear convergence rate nearly (up to a logarithmic factor) matching that of uniform Hessian averaging.
translated by 谷歌翻译
最近的一些实证研究表明,重要的机器学习任务,例如训练深神网络,表现出低级别的结构,其中损耗函数仅在输入空间的几个方向上差异很大。在本文中,我们利用这种低级结构来降低基于规范梯度的方法(例如梯度下降(GD))的高计算成本。我们提出的\ emph {低率梯度下降}(lrgd)算法找到了$ \ epsilon $ - approximate的固定点$ p $ - 维功能,首先要识别$ r \ r \ leq p $重要的方向,然后估算真实的方向每次迭代的$ p $维梯度仅通过计算$ r $方向来计算定向衍生物。我们确定强烈凸和非convex目标函数的LRGD的“定向甲骨文复杂性”是$ \ Mathcal {o}(r \ log(1/\ epsilon) + rp) + rp)$ and $ \ Mathcal {o}(R /\ epsilon^2 + rp)$。当$ r \ ll p $时,这些复杂性小于$ \ mathcal {o}的已知复杂性(p \ log(1/\ epsilon))$和$ \ mathcal {o}(p/\ epsilon^2) {\ gd}的$分别在强凸和非凸口设置中。因此,LRGD显着降低了基于梯度的方法的计算成本,以实现足够低级别的功能。在分析过程中,我们还正式定义和表征精确且近似级别函数的类别。
translated by 谷歌翻译
广义自我符合是许多重要学习问题的目标功能中存在的关键属性。我们建立了一个简单的Frank-Wolfe变体的收敛速率,该变体使用开环步数策略$ \ gamma_t = 2/(t+2)$,获得了$ \ Mathcal {o}(1/t)$收敛率对于这类功能,就原始差距和弗兰克 - 沃尔夫差距而言,$ t $是迭代计数。这避免了使用二阶信息或估计以前工作的局部平滑度参数的需求。我们还显示了各种常见病例的收敛速率的提高,例如,当所考虑的可行区域均匀地凸或多面体时。
translated by 谷歌翻译
低级和非平滑矩阵优化问题捕获了统计和机器学习中的许多基本任务。尽管近年来在开发\ textIt {平滑}低级优化问题的有效方法方面取得了重大进展,这些问题避免了保持高级矩阵和计算昂贵的高级SVD,但不平滑问题的进步的步伐缓慢。在本文中,我们考虑了针对此类问题的标准凸放松。主要是,我们证明,在\ textit {严格的互补性}条件下,在相对温和的假设下,非平滑目标可以写成最大的光滑功能,近似于两个流行的\ textit {mirriry-prox}方法的变体: \ textIt {外部方法}和带有\ textIt {矩阵启用梯度更新}的镜像 - prox,当用“温暖启动”初始化时,将速率$ o(1/t)$的最佳解决方案收集到最佳解决方案,同时仅需要两个\ textIt {low-rank} svds每迭代。此外,对于外部方法,我们还考虑了严格互补性的放松版本,该版本在所需的SVD等级与我们需要初始化该方法的球的半径之间取决于权衡。我们通过几个非平滑级矩阵恢复任务的经验实验来支持我们的理论结果,这既证明了严格的互补性假设的合理性,又证明了我们所提出的低级镜像 - 镜像变体的有效收敛。
translated by 谷歌翻译
许多基本的低级优化问题,例如矩阵完成,相位同步/检索,功率系统状态估计和鲁棒PCA,可以作为矩阵传感问题提出。求解基质传感的两种主要方法是基于半决赛编程(SDP)和Burer-Monteiro(B-M)分解的。 SDP方法患有高计算和空间复杂性,而B-M方法可能由于问题的非跨性别而返回伪造解决方案。这些方法成功的现有理论保证导致了类似的保守条件,这可能错误地表明这些方法具有可比性的性能。在本文中,我们阐明了这两种方法之间的一些主要差异。首先,我们提出一类结构化矩阵完成问题,而B-M方法则以压倒性的概率失败,而SDP方法正常工作。其次,我们确定了B-M方法工作和SDP方法失败的一类高度稀疏矩阵完成问题。第三,我们证明,尽管B-M方法与未知解决方案的等级无关,但SDP方法的成功与解决方案的等级相关,并随着等级的增加而提高。与现有的文献主要集中在SDP和B-M工作的矩阵传感实例上,本文为每种方法的独特优点提供了与替代方法的唯一优点。
translated by 谷歌翻译
The nonconvex formulation of matrix completion problem has received significant attention in recent years due to its affordable complexity compared to the convex formulation. Gradient descent (GD) is the simplest yet efficient baseline algorithm for solving nonconvex optimization problems. The success of GD has been witnessed in many different problems in both theory and practice when it is combined with random initialization. However, previous works on matrix completion require either careful initialization or regularizers to prove the convergence of GD. In this work, we study the rank-1 symmetric matrix completion and prove that GD converges to the ground truth when small random initialization is used. We show that in logarithmic amount of iterations, the trajectory enters the region where local convergence occurs. We provide an upper bound on the initialization size that is sufficient to guarantee the convergence and show that a larger initialization can be used as more samples are available. We observe that implicit regularization effect of GD plays a critical role in the analysis, and for the entire trajectory, it prevents each entry from becoming much larger than the others.
translated by 谷歌翻译