Vision-Language Pre-Training (VLP) has shown promising capabilities to align image and text pairs, facilitating a broad variety of cross-modal learning tasks. However, we observe that VLP models often lack the visual grounding/localization capability which is critical for many downstream tasks such as visual reasoning. In this work, we propose a novel Position-guided Text Prompt (PTP) paradigm to enhance the visual grounding ability of cross-modal models trained with VLP. Specifically, in the VLP phase, PTP divides the image into $N\times N$ blocks, and identifies the objects in each block through the widely used object detector in VLP. It then reformulates the visual grounding task into a fill-in-the-blank problem given a PTP by encouraging the model to predict the objects in the given blocks or regress the blocks of a given object, e.g. filling `P" or ``O" in aPTP ``The block P has a O". This mechanism improves the visual grounding capability of VLP models and thus helps them better handle various downstream tasks. By introducing PTP into several state-of-the-art VLP frameworks, we observe consistently significant improvements across representative cross-modal learning model architectures and several benchmarks, e.g. zero-shot Flickr30K Retrieval (+4.8 in average recall@1) for ViLT \cite{vilt} baseline, and COCO Captioning (+5.3 in CIDEr) for SOTA BLIP \cite{blip} baseline. Moreover, PTP achieves comparable results with object-detector based methods, and much faster inference speed since PTP discards its object detector for inference while the later cannot. Our code and pre-trained weight will be released at \url{https://github.com/sail-sg/ptp}.
translated by 谷歌翻译
视觉语言(VL)预训练最近受到了广泛的关注。但是,大多数现有的端到端预训练方法只旨在解决诸如图像文本检索,视觉询问答案(VQA)和图像字幕等VL任务,以测试对图像的高级了解,或者仅对目标区域进行测试 - 对诸如短语接地和对象检测等任务的水平理解。我们提出了Fiber(基于回避的变压器),这是一种新的VL模型体系结构,可以无缝处理这两种类型的任务。 Fiber没有将多模式融合到模型深处,而不是将融合后的专用变压器层用于融合,而是通过将交叉注意力插入图像和文本骨干杆中,从而在记忆和性能方面带来了增长。此外,与以前的工作不同,它要么仅在图像文本数据上进行训练,要么在带有框级注释的细粒度数据上进行培训,我们提出了一种两阶段的预训练策略,该策略有效地使用了这两种数据:(( i)基于图像文本数据的粗粒细化预训练;然后是(ii)基于图像文本框数据的细粒度预训练。我们对各种VL任务进行全面的实验,从VQA,图像字幕和检索到短语接地,参考表达理解和对象检测。使用深层多模式融合,结合两阶段的预训练,光纤可对所有任务的强基础进行一致的性能改进,通常使用幅度更优于更多数据的方法。代码可从https://github.com/microsoft/fiber获得。
translated by 谷歌翻译
最近,通过引入大规模的数据集和强大的变压器网络,视频预培训表明尤其是检索的巨大成功。然而,现有的视频语言变压器模型没有明确细粒度的语义对齐。在这项工作中,我们呈现了对象感知的变换器,以对象为中心的方法,该对象方法扩展了视频语言变压器来合并对象表示。关键的想法是利用边界框和对象标签来指导培训过程。我们在四个广泛使用的基准测试中评估了我们的三个标准子任务的模型。我们还提供了深入的分析和详细消融关于所提出的方法。我们在考虑的所有任务和数据集中表现出清晰的性能,展示将对象表示的模型中的型号集成到视频架构中。代码将以\ URL {https://github.com/fingerrec/oa -transformer}释放。
translated by 谷歌翻译
Learning fine-grained interplay between vision and language allows to a more accurate understanding for VisionLanguage tasks. However, it remains challenging to extract key image regions according to the texts for semantic alignments. Most existing works are either limited by textagnostic and redundant regions obtained with the frozen detectors, or failing to scale further due to its heavy reliance on scarce grounding (gold) data to pre-train detectors. To solve these problems, we propose Self-Locator Aided Network (SLAN) for cross-modal understanding tasks without any extra gold data. SLAN consists of a region filter and a region adaptor to localize regions of interest conditioned on different texts. By aggregating cross-modal information, the region filter selects key regions and the region adaptor updates their coordinates with text guidance. With detailed region-word alignments, SLAN can be easily generalized to many downstream tasks. It achieves fairly competitive results on five cross-modal understanding tasks (e.g., 85.7% and 69.2% on COCO image-to-text and text-to-image retrieval, surpassing previous SOTA methods). SLAN also demonstrates strong zero-shot and fine-tuned transferability to two localization tasks.
translated by 谷歌翻译
我们提出了GLIPV2,这是一个接地的VL理解模型,该模型既服务于本地化任务(例如,对象检测,实例分割)和视觉语言(VL)理解任务(例如VQA,图像字幕)。 GLIPV2优雅地将本地化预训练和视觉语言预训练(VLP)具有三个预训练任务:短语接地作为对检测任务的VL重新重新制定,区域词对比度学习作为新型的区域词对比度对比度对比学习任务,以及蒙面的语言建模。这种统一不仅简化了先前的多阶段VLP程序,而且还可以在本地化和理解任务之间实现相互利益。实验结果表明,在各种本地化和理解任务上,单个GLIPV2模型(所有模型权重)在SOTA性能附近实现。该模型还显示了(1)在开放式摄制对象检测任务上进行的强零射击和很少的自适应性能,以及(2)VL理解任务上的卓越接地能力。代码将在https://github.com/microsoft/glip上发布。
translated by 谷歌翻译
本文介绍了Omnivl,这是一种新的基础模型,旨在使用一种通用体系结构来支持图像语言和视频语言任务。它为图像和视频输入采用了统一的基于变压器的视觉编码器,因此可以执行联合图像语言和视频语言预处理。我们首次证明了这样的范式受益于图像和视频任务,而不是传统的单向传输(例如,使用图像语言来帮助视频语言)。为此,我们提出了对图像语言和视频语言的脱钩关节预处理,以有效地将视觉模型分解为空间和时间维度,并在图像和视频任务上获得性能提升。此外,我们引入了一种新颖的统一视觉对比度(UNIVLC)损失,以利用图像文本,视频文本,图像标签(例如,图像分类),视频标签(例如,视频动作识别)在一起受到监督和吵闹的监督预处理数据都尽可能多地利用。无需额外的任务适配器,Omnivl可以同时支持仅视觉任务(例如,图像分类,视频操作识别),跨模式对齐任务(例如,图像/视频 - 文本检索)和多模式理解和生成任务(例如,图像/视频问答,字幕)。我们在各种下游任务上评估Omnivl,并以相似的模型大小和数据量表获得最新的或竞争结果。
translated by 谷歌翻译
在本文中,我们提出了一种单一统一的变压器(UFO),其能够处理视觉语言的单峰输入(例如,图像或语言)或多模式输入(例如,图像和问题的串联)( VL)表示学习。现有方法通常为每个模态和/或特定融合网络设计个人网络,用于多模式任务。为了简化网络架构,我们使用单个变压器网络并在VL预培训期间强制执行多任务学习,其包括图像文本对比丢失,图像文本匹配丢失和基于双向的屏蔽语言建模损耗SEQ2Seq注意面具。相同的变压器网络用作不同预训练任务中的图像编码器,文本编码器或融合网络。经验上,我们观察不同任务之间的冲突,并在视觉问题应答,Coco图像标题(交叉熵优化)和Nocaps(在香料中)实现新的艺术状态。在其他下游任务中,例如,图像文本检索,我们也实现了竞争性能。
translated by 谷歌翻译
以前的视觉语言预训练模型主要构建具有令牌和对象(像素)的多模式输入,然后在它们之间执行交叉模式相互作用。我们认为,只有令牌和对象的输入限制了诸如短语到区域接地之类的高级语义对齐。同时,多层次对齐本质上是一致的,并且能够协同促进表示形式学习。因此,在本文中,我们建议学习视觉预训练(MVPTR)的多级语义一致性。在MVPTR中,我们遵循两种方式的嵌套结构,以引入概念为高级语义。为了简化从多模式多级输入的学习,我们的框架分为两个阶段,第一阶段着重于模式内多级表示学习,第二阶段通过粗粒和细粒度跨模态强化了跨模式的交互语义对齐任务。除了常用的图像文本匹配和掩盖语言模型任务外,我们还引入了第一阶段蒙版概念恢复任务以增强概念表示学习,第二阶段的另外两个任务在第二阶段中,以明确鼓励跨跨层次的多层次对准方式。我们的代码可在https://github.com/junction4nako/mvp_pytorch上找到。
translated by 谷歌翻译
Vision-and语言(VL)预培训已被证明对各种VL下游任务非常有效。虽然最近的工作表明,基于完全变换器的VL模型可以比以前的基于区域特征的方法更有效,但它们在下游任务上的性能通常显着降低。在本文中,我们呈现仪表〜(\ textbf {m} ultimodal \ textbf {e} nd-to-text \ textbf {t} ransform \ textbf {er}),我们通过它系统地调查如何设计和预先列车基于完全变换器的VL模型以端到端的方式。具体而言,我们将模型设计沿多个尺寸分析:视觉编码器(例如,剪辑 - vit,Swin变压器),文本编码器(例如,Roberta,Deberta),多模式融合(例如,合并注意力与共同关注),架构设计(例如,仅编码器与编码器 - 解码器)和预训练目标(例如,屏蔽图像建模)。我们对广泛的VL任务进行全面实验,并提供有关如何在保持快速推理速度的同时培训表演VL变压器的见解。值得注意的是,仪表〜使用仅使用4M图像进行预培训的VQAV2 TEST-STD设置的精度为77.64 \%,超过最先进的区域特征的VINVL模型+1.04 \%,以及优于以前最好的完全变换器的ALBEF模型+1.6 \%。
translated by 谷歌翻译
We study joint learning of Convolutional Neural Network (CNN) and Transformer for vision-language pre-training (VLPT) which aims to learn cross-modal alignments from millions of image-text pairs. State-of-the-art approaches extract salient image regions and align regions with words step-by-step. As region-based visual features usually represent parts of an image, it is challenging for existing visionlanguage models to fully understand the semantics from paired natural languages. In this paper, we propose SOHO to "See Out of tHe bOx" that takes a whole image as input, and learns vision-language representation in an endto-end manner. SOHO does not require bounding box annotations which enables inference 10 times faster than regionbased approaches. In particular, SOHO learns to extract comprehensive yet compact image features through a visual dictionary (VD) that facilitates cross-modal understanding. VD is designed to represent consistent visual abstractions of similar semantics. It is updated on-the-fly and utilized in our proposed pre-training task Masked Visual Modeling (MVM). We conduct experiments on four well-established vision-language tasks by following standard VLPT settings. In particular, SOHO achieves absolute gains of 2.0% R@1 score on MSCOCO text retrieval 5k test split, 1.5% accuracy on NLVR 2 test-P split, 6.7% accuracy on SNLI-VE test split, respectively.
translated by 谷歌翻译
在过去的几年中,训练前模型的出现将单峰领域(例如计算机视觉(CV)和自然语言处理(NLP))带到了一个新时代。实质性的作品表明它们对下游大学任务有益,并避免从头开始训练新的模型。那么,此类预训练的模型可以应用于多模式任务吗?研究人员探索了这个问题并取得了重大进展。本文调查了视觉预训练(VLP)的最新进展和新的前沿,包括图像文本和视频文本预训练。为了使读者更好地掌握VLP,我们首先从五个方面回顾了其最新进展:功能提取,模型体系结构,培训预训练目标,预训练数据集和下游任务。然后,我们详细概述了特定的VLP模型。最后,我们讨论了VLP中的新边界。据我们所知,这是对VLP的首次调查。我们希望这项调查能够阐明VLP领域的未来研究。
translated by 谷歌翻译
Vision-Language Transformers can be learned without human labels (e.g. class labels, bounding boxes, etc). Existing work, whether explicitly utilizing bounding boxes or patches, assumes that the visual backbone must first be trained on ImageNet class prediction before being integrated into a multimodal linguistic pipeline. We show that this is not necessary and introduce a new model Vision-Language from Captions (VLC) built on top of Masked Auto-Encoders that does not require this supervision. In fact, in a head-to-head comparison between ViLT, the current state-of-the-art patch-based vision-language transformer which is pretrained with supervised object classification, and our model, VLC, we find that our approach 1. outperforms ViLT on standard benchmarks, 2. provides more interpretable and intuitive patch visualizations, and 3. is competitive with many larger models that utilize ROIs trained on annotated bounding-boxes.
translated by 谷歌翻译
Large-scale pre-training methods of learning cross-modal representations on image-text pairs are becoming popular for vision-language tasks. While existing methods simply concatenate image region features and text features as input to the model to be pre-trained and use selfattention to learn image-text semantic alignments in a brute force manner, in this paper, we propose a new learning method Oscar 1 , which uses object tags detected in images as anchor points to significantly ease the learning of alignments. Our method is motivated by the observation that the salient objects in an image can be accurately detected, and are often mentioned in the paired text. We pre-train an Oscar model on the public corpus of 6.5 million text-image pairs, and fine-tune it on downstream tasks, creating new state-of-the-arts on six well-established vision-language understanding and generation tasks. 2
translated by 谷歌翻译
近年来,统一的视觉语言框架已经大大提高,其中大多数采用编码器架构将图像文本任务统一为序列到序列的生成。但是,现有的视频语言(VIDL)模型仍需要在每个任务的模型体系结构和培训目标中进行特定于任务的设计。在这项工作中,我们探索了一个统一的VIDL框架薰衣草,其中蒙版语言建模(MLM)用作所有前训练和下游任务的常见接口。这样的统一导致了简化的模型体系结构,在多模式编码器之上,只需要一个轻巧的MLM头,而不是具有更多参数的解码器。令人惊讶的是,实验结果表明,这个统一的框架在14个VIDL基准测试中实现了竞争性能,涵盖了视频问答,文本到视频检索和视频字幕。广泛的分析进一步证明了薰衣草比现有VIDL方法的优势:(i)在多任务列出时仅使用一组参数值支持所有下游任务; (ii)对各种下游任务的几乎没有概括; (iii)在视频问题回答任务上启用零射门评估。代码可从https://github.com/microsoft/lavender获得。
translated by 谷歌翻译
远见和语言预测已成为解决多模式下游任务的普遍方法。当前的趋势是朝着更大的模型和预处理数据集迈进。从长远来看,这一计算头急促似乎是不合理的,而是朝着可持续的解决方案迈进,事实上,排除了资源有限的学术实验室。在这项工作中,我们提出了一个称为VICHA的新框架,该框架有效利用输入数据以通过以下方式提高学习,以: ,(c)利用图像级注释,称为视觉概念,使用现有基础模型(例如剪辑)获得,以提高图像编码器的性能。尽管对数据的预估计少了四倍,但我们的VICHA策略在下游任务(例如图像文本检索,VQA,视觉推理,视觉上和视觉接地)上的其他方法优于其他方法。该代码将在此处公开提供:https://github.com/mshukor/vicha
translated by 谷歌翻译
随着变压器的发展,近年来预先训练的模型已经以突破性的步伐发展。他们在自然语言处理(NLP)和计算机视觉(CV)中主导了主流技术。如何将预训练适应视觉和语言(V-L)学习和改善下游任务绩效成为多模式学习的重点。在本文中,我们回顾了视力语言预训练模型(VL-PTMS)的最新进展。作为核心内容,我们首先简要介绍了几种方法,将原始图像和文本编码为单模式嵌入在预训练之前。然后,我们在建模文本和图像表示之间的相互作用时深入研究VL-PTM的主流体系结构。我们进一步提出了广泛使用的预训练任务,然后我们介绍了一些常见的下游任务。我们终于结束了本文,并提出了一些有前途的研究方向。我们的调查旨在为研究人员提供合成和指向相关研究的指针。
translated by 谷歌翻译
The availability of large-scale image captioning and visual question answering datasets has contributed significantly to recent successes in vision-and-language pretraining. However, these datasets are often collected with overrestrictive requirements inherited from their original target tasks (e.g., image caption generation), which limit the resulting dataset scale and diversity. We take a step further in pushing the limits of vision-and-language pretraining data by relaxing the data collection pipeline used in Conceptual Captions 3M (CC3M) [70] and introduce the Conceptual 12M (CC12M), a dataset with 12 million image-text pairs specifically meant to be used for visionand-language pre-training. We perform an analysis of this dataset and benchmark its effectiveness against CC3M on multiple downstream tasks with an emphasis on long-tail visual recognition. Our results clearly illustrate the benefit of scaling up pre-training data for vision-and-language tasks, as indicated by the new state-of-the-art results on both the nocaps and Conceptual Captions benchmarks. 1
translated by 谷歌翻译
大规模的视觉预训练在各种下游任务中都表现出了令人印象深刻的进步。现有方法主要是通过图像和文本的全局表示形式的相似性或对图像和文本特征上的高级交叉模式关注来对跨模式对齐进行建模。但是,由于只有全局图像文本对齐信息,因此他们无法明确学习视觉区域和文本短语之间的细粒语义对齐。在本文中,我们介绍了Loupe,这是一种精细的语义一致性视觉语言预训练框架,该框架从新颖的游戏理论互动的角度学习了细粒度的语义对齐。为了有效地计算游戏理论相互作用,我们进一步提出了一种不确定性感知的神经Shapley交互学习模块。实验表明,Loupe在图像文本检索基准测试中实现了最新的。如果没有任何对象级的人类注释和微调,Loupe就可以在对象检测和视觉接地方面实现竞争性能。更重要的是,Loupe从大规模的原始图像文本对学习细粒语义的新方向。
translated by 谷歌翻译
本文介绍了用于学习对象级别,语言感知和富含语义的视觉表示的接地语言图像预培训(GLIP)模型。 Glip统一对象检测和短语进行预培训。统一带来了两个好处:1)它允许GLIP从检测和接地数据中学习,以改善两个任务和引导良好的接地模型; 2)GLIP可以通过以自培训方式产生接地盒来利用大规模的图像文本对,使学习的表示是语义丰富的。在我们的实验中,我们在27M的接地数据上预先列车触胶,包括3M人的注释和24M Web爬网的图像文本对。学习的表示表明了强烈的零射击和对各种对象识别任务的可转换性。 1)直接在Coco和LVIS上评估(在训练期间没有在Coco中看到任何图像)时,Plip分别达到49.8 AP和26.9 AP,超过许多监督基线。 2)在COCO上微调后,GLIP在Val和61.5 AP上实现60.8 AP在测试开发上,超过先前的SOTA。 3)当转移到下游对象检测任务时,具有完全监控动态头的1次触发器竞争对手。代码将在https://github.com/microsoft/glip发布。
translated by 谷歌翻译
This paper presents a detailed study of improving visual representations for vision language (VL) tasks and develops an improved object detection model to provide object-centric representations of images. Compared to the most widely used bottom-up and top-down model [2], the new model is bigger, better-designed for VL tasks, and pre-trained on much larger training corpora that combine multiple public annotated object detection datasets. Therefore, it can generate representations of a richer collection of visual objects and concepts. While previous VL research focuses mainly on improving the vision-language fusion model and leaves the object detection model improvement untouched, we show that visual features matter significantly in VL models. In our experiments we feed the visual features generated by the new object detection model into a Transformer-based VL fusion model OSCAR [21], and utilize an improved approach OSCAR+ to pre-train the VL model and fine-tune it on a wide range of downstream VL tasks. Our results show that the new visual features significantly improve the performance across all VL tasks, creating new state-of-the-art results on seven public benchmarks. Code, models and pre-extracted features are released at https://github.com/pzzhang/VinVL. ♥ Microsoft Corporation♠ University of Washington † indicates equal contributions.
translated by 谷歌翻译