精确农业正在迅速吸引研究,以有效地引入自动化和机器人解决方案,以支持农业活动。葡萄园和果园中的机器人导航在自主监控方面具有竞争优势,并轻松获取农作物来收集,喷涂和执行时必的耗时必要任务。如今,自主导航算法利用了昂贵的传感器,这也需要大量的数据处理计算成本。尽管如此,葡萄园行代表了一个具有挑战性的户外场景,在这种情况下,GPS和视觉进程技术通常难以提供可靠的定位信息。在这项工作中,我们将Edge AI与深度强化学习相结合,以提出一种尖端的轻质解决方案,以解决自主葡萄园导航的问题,而无需利用精确的本地化数据并通过基于灵活的学习方法来克服任务列出的算法。我们训练端到端的感觉运动剂,该端机直接映射嘈杂的深度图像和位置不可稳定的机器人状态信息到速度命令,并将机器人引导到一排的尽头,不断调整其标题以进行无碰撞的无碰撞中央轨迹。我们在现实的模拟葡萄园中进行的广泛实验证明了解决方案的有效性和代理的概括能力。
translated by 谷歌翻译
Robot assistants are emerging as high-tech solutions to support people in everyday life. Following and assisting the user in the domestic environment requires flexible mobility to safely move in cluttered spaces. We introduce a new approach to person following for assistance and monitoring. Our methodology exploits an omnidirectional robotic platform to detach the computation of linear and angular velocities and navigate within the domestic environment without losing track of the assisted person. While linear velocities are managed by a conventional Dynamic Window Approach (DWA) local planner, we trained a Deep Reinforcement Learning (DRL) agent to predict optimized angular velocities commands and maintain the orientation of the robot towards the user. We evaluate our navigation system on a real omnidirectional platform in various indoor scenarios, demonstrating the competitive advantage of our solution compared to a standard differential steering following.
translated by 谷歌翻译
昂贵的传感器和低效的算法管道显着影响自动机器的总成本。然而,实惠的机器人解决方案对于实际使用至关重要,其财务影响构成了在大多数申请领域采用服务机器人的基本要求。其中,精密农业领域的研究人员努力设计强大,经济高效的自主平台,以提供真正的大规模竞争解决方案。在本文中,我们提出了一个完整的算法管道,用于基于行的作物自主导航,专门设计用于应对低范围的传感器和季节性变化。首先,我们建立一个强大的数据驱动方法,为自主机器生成一个可行的路径,仅涵盖庄稼的占用网格信息的裁剪的完整扩展。此外,我们的解决方案利用了深入学习优化技术和综合生成数据的最新进步,以提供一种实惠的解决方案,可有效地解决由于植被生长在行的植被而有效地解决了众所周知的全球导航卫星系统不可靠性和降级。对计算机生成的环境和现实世界作物的广泛实验和模拟表明了我们的方法的稳健性和内在的完全平整性,其开辟了高度实惠和完全自主机器的可能性。
translated by 谷歌翻译
Underwater navigation presents several challenges, including unstructured unknown environments, lack of reliable localization systems (e.g., GPS), and poor visibility. Furthermore, good-quality obstacle detection sensors for underwater robots are scant and costly; and many sensors like RGB-D cameras and LiDAR only work in-air. To enable reliable mapless underwater navigation despite these challenges, we propose a low-cost end-to-end navigation system, based on a monocular camera and a fixed single-beam echo-sounder, that efficiently navigates an underwater robot to waypoints while avoiding nearby obstacles. Our proposed method is based on Proximal Policy Optimization (PPO), which takes as input current relative goal information, estimated depth images, echo-sounder readings, and previous executed actions, and outputs 3D robot actions in a normalized scale. End-to-end training was done in simulation, where we adopted domain randomization (varying underwater conditions and visibility) to learn a robust policy against noise and changes in visibility conditions. The experiments in simulation and real-world demonstrated that our proposed method is successful and resilient in navigating a low-cost underwater robot in unknown underwater environments. The implementation is made publicly available at https://github.com/dartmouthrobotics/deeprl-uw-robot-navigation.
translated by 谷歌翻译
在本文中,我们研究了DRL算法在本地导航问题的应用,其中机器人仅配备有限​​量距离的外部感受传感器(例如LIDAR),在未知和混乱的工作区中朝着目标位置移动。基于DRL的碰撞避免政策具有一些优势,但是一旦他们学习合适的动作的能力仅限于传感器范围,它们就非常容易受到本地最小值的影响。由于大多数机器人在非结构化环境中执行任务,因此寻求能够避免本地最小值的广义本地导航政策,尤其是在未经训练的情况下,这是非常兴趣的。为此,我们提出了一种新颖的奖励功能,该功能结合了在训练阶段获得的地图信息,从而提高了代理商故意最佳行动方案的能力。另外,我们使用SAC算法来训练我们的ANN,这表明在最先进的文献中比其他人更有效。一组SIM到SIM和SIM到现实的实验表明,我们提出的奖励与SAC相结合的表现优于比较局部最小值和避免碰撞的方法。
translated by 谷歌翻译
这项工作调查了基于课程学习(CL)对代理商的绩效的影响。特别是,我们专注于机器人毛美导航的安全方面,比较标准端到端(E2E)培训策略。为此,我们提出了一种方法,即利用学习(tol)和微调在基于团结的模拟中的微调,以及Robotnik Kairos作为机器人代理。对于公平的比较,我们的评估考虑了对每个学习方法的同等计算需求(即,相同的相互作用和环境的难度数),并确认我们基于CL的方法使用TOL优于E2E方法。特别是,我们提高了培训的政策的平均成功率和安全,导致看不见的测试方案中的碰撞减少了10%。为了进一步确认这些结果,我们采用正式的验证工具来量化加强学习政策的正确行为数量超过所需规范。
translated by 谷歌翻译
Development of navigation algorithms is essential for the successful deployment of robots in rapidly changing hazardous environments for which prior knowledge of configuration is often limited or unavailable. Use of traditional path-planning algorithms, which are based on localization and require detailed obstacle maps with goal locations, is not possible. In this regard, vision-based algorithms hold great promise, as visual information can be readily acquired by a robot's onboard sensors and provides a much richer source of information from which deep neural networks can extract complex patterns. Deep reinforcement learning has been used to achieve vision-based robot navigation. However, the efficacy of these algorithms in environments with dynamic obstacles and high variation in the configuration space has not been thoroughly investigated. In this paper, we employ a deep Dyna-Q learning algorithm for room evacuation and obstacle avoidance in partially observable environments based on low-resolution raw image data from an onboard camera. We explore the performance of a robotic agent in environments containing no obstacles, convex obstacles, and concave obstacles, both static and dynamic. Obstacles and the exit are initialized in random positions at the start of each episode of reinforcement learning. Overall, we show that our algorithm and training approach can generalize learning for collision-free evacuation of environments with complex obstacle configurations. It is evident that the agent can navigate to a goal location while avoiding multiple static and dynamic obstacles, and can escape from a concave obstacle while searching for and navigating to the exit.
translated by 谷歌翻译
我们提出了Midgard,这是一个用于室外非结构化环境中自动机器人导航的开源模拟平台。 Midgard旨在实现在影照相3D环境中对自主代理(例如,无人接地车)进行培训,并通过培训场景中的可变性来支持基于学习的代理的概括技巧。 Midgard的主要功能包括可配置,可扩展和难度驱动的程序景观生成管道,并具有基于虚幻引擎的快速和影像现实主义场景。此外,Midgard还对OpenAi Gym进行了内置支持,OpenAi Gym是一个用于功能扩展的编程接口(例如,集成新型的传感器,自定义曝光内部模拟变量)和各种模拟代理传感器(例如RGB,DEPTH和实例/实例/语义细分)。我们评估了Midgard的功能,作为使用一组最先进的强化学习算法的机器人导航的基准测试工具。结果表明,Midgard作为模拟和训练环境的适用性,以及我们程序生成方法在控制场景难度方面的有效性,这直接反映了准确度量指标。 Midgard构建,源代码和文档可在https://midgardsim.org/上找到。
translated by 谷歌翻译
Despite some successful applications of goal-driven navigation, existing deep reinforcement learning-based approaches notoriously suffers from poor data efficiency issue. One of the reasons is that the goal information is decoupled from the perception module and directly introduced as a condition of decision-making, resulting in the goal-irrelevant features of the scene representation playing an adversary role during the learning process. In light of this, we present a novel Goal-guided Transformer-enabled reinforcement learning (GTRL) approach by considering the physical goal states as an input of the scene encoder for guiding the scene representation to couple with the goal information and realizing efficient autonomous navigation. More specifically, we propose a novel variant of the Vision Transformer as the backbone of the perception system, namely Goal-guided Transformer (GoT), and pre-train it with expert priors to boost the data efficiency. Subsequently, a reinforcement learning algorithm is instantiated for the decision-making system, taking the goal-oriented scene representation from the GoT as the input and generating decision commands. As a result, our approach motivates the scene representation to concentrate mainly on goal-relevant features, which substantially enhances the data efficiency of the DRL learning process, leading to superior navigation performance. Both simulation and real-world experimental results manifest the superiority of our approach in terms of data efficiency, performance, robustness, and sim-to-real generalization, compared with other state-of-art baselines. Demonstration videos are available at \colorb{https://youtu.be/93LGlGvaN0c.
translated by 谷歌翻译
我们提出了一种新颖的户外导航算法,以生成稳定,有效的动作,以将机器人导航到目标。我们使用多阶段的训练管道,并表明我们的模型产生了政策,从而在复杂的地形上导致稳定且可靠的机器人导航。基于近端政策优化(PPO)算法,我们开发了一种新颖的方法来实现户外导航任务的多种功能,即:减轻机器人的漂移,使机器人在颠簸的地形上保持稳定,避免在山丘上攀登,并具有陡峭的山坡,并改变了山坡,并保持了陡峭的高度变化,并使机器人稳定在山坡上,并避免了攀岩地面上的攀登,并避免了机器人的攀岩地形,并避免了机器人的攀岩地形。避免碰撞。我们的培训过程通过引入更广泛的环境和机器人参数以及统一模拟器中LIDAR感知的丰富特征来减轻现实(SIM到现实)差距。我们使用Clearphith Husky和Jackal在模拟和现实世界中评估我们的方法。此外,我们将我们的方法与最先进的方法进行了比较,并表明在现实世界中,它在不平坦的地形上至少提高了30.7%通过防止机器人在高梯度的区域移动,机器人在每个运动步骤处的高程变化。
translated by 谷歌翻译
深度强化学习在基于激光的碰撞避免有效的情况下取得了巨大的成功,因为激光器可以感觉到准确的深度信息而无需太多冗余数据,这可以在算法从模拟环境迁移到现实世界时保持算法的稳健性。但是,高成本激光设备不仅很难为大型机器人部署,而且还表现出对复杂障碍的鲁棒性,包括不规则的障碍,例如桌子,桌子,椅子和架子,以及复杂的地面和特殊材料。在本文中,我们提出了一个新型的基于单眼相机的复杂障碍避免框架。特别是,我们创新地将捕获的RGB图像转换为伪激光测量,以进行有效的深度强化学习。与在一定高度捕获的传统激光测量相比,仅包含距离附近障碍的一维距离信息,我们提议的伪激光测量融合了捕获的RGB图像的深度和语义信息,这使我们的方法有效地有效障碍。我们还设计了一个功能提取引导模块,以加重输入伪激光测量,并且代理对当前状态具有更合理的关注,这有利于提高障碍避免政策的准确性和效率。
translated by 谷歌翻译
这项工作研究了图像目标导航问题,需要通过真正拥挤的环境引导具有嘈杂传感器和控制的机器人。最近的富有成效的方法依赖于深度加强学习,并学习模拟环境中的导航政策,这些环境比真实环境更简单。直接将这些训练有素的策略转移到真正的环境可能非常具有挑战性甚至危险。我们用由四个解耦模块组成的分层导航方法来解决这个问题。第一模块在机器人导航期间维护障碍物映射。第二个将定期预测实时地图上的长期目标。第三个计划碰撞命令集以导航到长期目标,而最终模块将机器人正确靠近目标图像。四个模块是单独开发的,以适应真实拥挤的情景中的图像目标导航。此外,分层分解对导航目标规划,碰撞避免和导航结束预测的学习进行了解耦,这在导航训练期间减少了搜索空间,并有助于改善以前看不见的真实场景的概括。我们通过移动机器人评估模拟器和现实世界中的方法。结果表明,我们的方法优于多种导航基线,可以在这些方案中成功实现导航任务。
translated by 谷歌翻译
本文介绍了一种新型深度加强基于基于深度加强学习的3D Fapless导航系统(无人机)。我们提出了一个简单的学习系统,而不是使用一种简单的学习系统,该系统仅使用来自距离传感器的一些稀疏范围数据来训练学习代理。我们基于我们对两种最先进的双重评论家深度RL模型的方法:双延迟深度确定性政策梯度(TD3)和软演员 - 评论家(SAC)。我们表明,我们的两种方法可以基于深度确定性政策梯度(DDPG)技术和Bug2算法来胜过一种方法。此外,我们基于经常性神经网络(RNNS)的新的深度RL结构优于用于执行移动机器人的FAPLESS导航的当前结构。总体而言,我们得出结论,基于双重评论评价的深度RL方法与经常性神经网络(RNNS)更适合进行熔化的导航和避免无人机。
translated by 谷歌翻译
强化学习(RL)通过原始像素成像和连续的控制任务在视频游戏中表现出了令人印象深刻的表现。但是,RL的性能较差,例如原始像素图像,例如原始像素图像。人们普遍认为,基于物理状态的RL策略(例如激光传感器测量值)比像素学习相比会产生更有效的样品结果。这项工作提出了一种新方法,该方法从深度地图估算中提取信息,以教授RL代理以执行无人机导航(UAV)的无地图导航。我们提出了深度模仿的对比度无监督的优先表示(DEPTH-CUPRL),该表示具有优先重播记忆的估算图像的深度。我们使用RL和对比度学习的组合,根据图像的RL问题引发。从无人驾驶汽车(UAV)对结果的分析中,可以得出结论,我们的深度cuprl方法在无MAP导航能力中对决策和优于最先进的像素的方法有效。
translated by 谷歌翻译
随着我们日常环境中机器人的存在越来越多,提高社交技能至关重要。尽管如此,社会机器人技术仍然面临许多挑战。一种瓶颈是,由于社会规范的强烈取决于环境,因此需要经常适应机器人行为。例如,与办公室的工人相比,机器人应更仔细地在医院的患者周围进行仔细的导航。在这项工作中,我们将元强化学习(META-RL)作为潜在解决方案进行了研究。在这里,机器人行为是通过强化学习来学习的,需要选择奖励功能,以便机器人学习适合给定环境的行为。我们建议使用一种变异元过程,该过程迅速使机器人的行为适应新的奖励功能。结果,给定一个新的环境,可以快速评估不同的奖励功能,并选择适当的奖励功能。该过程学习奖励函数的矢量表示和可以在这种表示形式下进行条件的元政策。从新的奖励函数中进行观察,该过程确定了其表示形式,并条件元元素对其进行了条件。在研究程序的功能时,我们意识到它遭受了后塌陷的困扰,在表示表示中只有一个尺寸的子集编码有用的信息,从而导致性能降低。我们的第二个贡献是径向基函数(RBF)层,部分减轻了这种负面影响。 RBF层将表示形式提升到较高的维空间,这对于元容器更容易利用。我们证明了RBF层的兴趣以及在四个机器人模拟任务上对社会机器人技术的使用元素使用。
translated by 谷歌翻译
具有通用机器人臂的外星漫游者在月球和行星勘探中具有许多潜在的应用。将自主权引入此类系统是需要增加流浪者可以花费收集科学数据并收集样本的时间的。这项工作调查了深钢筋学习对月球上对象的基于视觉的机器人抓握的适用性。创建了一个具有程序生成数据集的新型模拟环境,以在具有不平衡的地形和严酷照明的非结构化场景中训练代理。然后,采用了无模型的非政治演员 - 批评算法来端对端学习,该策略将紧凑的OCTREE观察结果直接映射到笛卡尔空间中的连续行动。实验评估表明,与传统使用的基于图像的观测值相比,3D数据表示可以更有效地学习操纵技能。域随机化改善了以前看不见的物体和不同照明条件的新场景的学识关系的概括。为此,我们通过评估月球障碍设施中的真实机器人上的训练有素的代理来证明零射击的SIM到现实转移。
translated by 谷歌翻译
行人在场的运动控制算法对于开发安全可靠的自动驾驶汽车(AV)至关重要。传统运动控制算法依赖于手动设计的决策政策,这些政策忽略了AV和行人之间的相互作用。另一方面,深度强化学习的最新进展允许在没有手动设计的情况下自动学习政策。为了解决行人在场的决策问题,作者介绍了一个基于社会价值取向和深入强化学习(DRL)的框架,该框架能够以不同的驾驶方式生成决策政策。该政策是在模拟环境中使用最先进的DRL算法培训的。还引入了适合DRL训练的新型计算效率的行人模型。我们执行实验以验证我们的框架,并对使用两种不同的无模型深钢筋学习算法获得的策略进行了比较分析。模拟结果表明,开发的模型如何表现出自然的驾驶行为,例如短暂的驾驶行为,以促进行人的穿越。
translated by 谷歌翻译
通过直接将感知输入映射到机器人控制命令中,深入的强化学习(DRL)算法已被证明在机器人导航中有效,尤其是在未知环境中。但是,大多数现有方法忽略导航中的局部最小问题,从而无法处理复杂的未知环境。在本文中,我们提出了第一个基于DRL的导航方法,该方法由具有连续动作空间,自适应向前模拟时间(AFST)的SMDP建模,以克服此问题。具体而言,我们通过修改其GAE来更好地估计SMDP中的策略梯度,改善了指定SMDP问题的分布式近端策略优化(DPPO)算法。我们在模拟器和现实世界中评估了我们的方法。
translated by 谷歌翻译
尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译