In reinforcement learning applications like robotics, agents usually need to deal with various input/output features when specified with different state/action spaces by their developers or physical restrictions. This indicates unnecessary re-training from scratch and considerable sample inefficiency, especially when agents follow similar solution steps to achieve tasks. In this paper, we aim to transfer similar high-level goal-transition knowledge to alleviate the challenge. Specifically, we propose PILoT, i.e., Planning Immediate Landmarks of Targets. PILoT utilizes the universal decoupled policy optimization to learn a goal-conditioned state planner; then, distills a goal-planner to plan immediate landmarks in a model-free style that can be shared among different agents. In our experiments, we show the power of PILoT on various transferring challenges, including few-shot transferring across action spaces and dynamics, from low-dimensional vector states to image inputs, from simple robot to complicated morphology; and we also illustrate a zero-shot transfer solution from a simple 2D navigation task to the harder Ant-Maze task.
translated by 谷歌翻译
仅国家模仿学习的最新进展将模仿学习的适用性扩展到现实世界中的范围,从而减轻了观察专家行动的需求。但是,现有的解决方案只学会从数据中提取州对行动映射策略,而无需考虑专家如何计划到目标。这阻碍了利用示威游行并限制政策的灵活性的能力。在本文中,我们介绍了解耦政策优化(DEPO),该策略优化(DEPO)明确将策略脱离为高级状态计划者和逆动力学模型。借助嵌入式的脱钩策略梯度和生成对抗训练,DEPO可以将知识转移到不同的动作空间或状态过渡动态,并可以将规划师推广到无示威的状态区域。我们的深入实验分析表明,DEPO在学习最佳模仿性能的同时学习通用目标状态计划者的有效性。我们证明了DEPO通过预训练跨任务转移的吸引力,以及与各种技能共同培训的潜力。
translated by 谷歌翻译
与一组复杂的RL问题有关的目标条件加固学习(GCRL)训练代理在特定情况下实现不同的目标。与仅根据州或观察结果了解政策的标准RL解决方案相比,GCRL还要求代理商根据不同的目标做出决策。在这项调查中,我们对GCRL的挑战和算法进行了全面的概述。首先,我们回答该领域研究的基本问题。然后,我们解释了如何代表目标并介绍如何从不同角度设计现有解决方案。最后,我们得出结论,并讨论最近研究重点的潜在未来前景。
translated by 谷歌翻译
Hierarchical Reinforcement Learning (HRL) algorithms have been demonstrated to perform well on high-dimensional decision making and robotic control tasks. However, because they solely optimize for rewards, the agent tends to search the same space redundantly. This problem reduces the speed of learning and achieved reward. In this work, we present an Off-Policy HRL algorithm that maximizes entropy for efficient exploration. The algorithm learns a temporally abstracted low-level policy and is able to explore broadly through the addition of entropy to the high-level. The novelty of this work is the theoretical motivation of adding entropy to the RL objective in the HRL setting. We empirically show that the entropy can be added to both levels if the Kullback-Leibler (KL) divergence between consecutive updates of the low-level policy is sufficiently small. We performed an ablative study to analyze the effects of entropy on hierarchy, in which adding entropy to high-level emerged as the most desirable configuration. Furthermore, a higher temperature in the low-level leads to Q-value overestimation and increases the stochasticity of the environment that the high-level operates on, making learning more challenging. Our method, SHIRO, surpasses state-of-the-art performance on a range of simulated robotic control benchmark tasks and requires minimal tuning.
translated by 谷歌翻译
在现实世界中经营通常需要代理商来了解复杂的环境,并应用这种理解以实现一系列目标。这个问题被称为目标有条件的强化学习(GCRL),对长地平线的目标变得特别具有挑战性。目前的方法通过使用基于图形的规划算法增强目标条件的策略来解决这个问题。然而,他们努力缩放到大型高维状态空间,并采用用于有效地收集训练数据的探索机制。在这项工作中,我们介绍了继任者功能标志性(SFL),这是一种探索大型高维环境的框架,以获得熟练的政策熟练的策略。 SFL利用继承特性(SF)来捕获转换动态的能力,通过估计状态新颖性来驱动探索,并通过将状态空间作为基于非参数标志的图形来实现高级规划。我们进一步利用SF直接计算地标遍历的目标条件调节策略,我们用于在探索状态空间边缘执行计划“前沿”地标。我们在我们的Minigrid和VizDoom进行了实验,即SFL可以高效地探索大型高维状态空间和优于长地平线GCRL任务的最先进的基线。
translated by 谷歌翻译
强化学习(RL)通过与环境相互作用的试验过程解决顺序决策问题。尽管RL在玩复杂的视频游戏方面取得了巨大的成功,但在现实世界中,犯错误总是不希望的。为了提高样本效率并从而降低错误,据信基于模型的增强学习(MBRL)是一个有前途的方向,它建立了环境模型,在该模型中可以进行反复试验,而无需实际成本。在这项调查中,我们对MBRL进行了审查,重点是Deep RL的最新进展。对于非壮观环境,学到的环境模型与真实环境之间始终存在概括性错误。因此,非常重要的是分析环境模型中的政策培训与实际环境中的差异,这反过来又指导了更好的模型学习,模型使用和政策培训的算法设计。此外,我们还讨论了其他形式的RL,包括离线RL,目标条件RL,多代理RL和Meta-RL的最新进展。此外,我们讨论了MBRL在现实世界任务中的适用性和优势。最后,我们通过讨论MBRL未来发展的前景来结束这项调查。我们认为,MBRL在被忽略的现实应用程序中具有巨大的潜力和优势,我们希望这项调查能够吸引更多关于MBRL的研究。
translated by 谷歌翻译
在许多增强学习(RL)应用中,观察空间由人类开发人员指定并受到物理实现的限制,因此可能会随时间的巨大变化(例如,观察特征的数量增加)。然而,当观察空间发生变化时,前一项策略可能由于输入特征不匹配而失败,并且另一个策略必须从头开始培训,这在计算和采样复杂性方面效率低。在理论上见解之后,我们提出了一种新颖的算法,该算法提取源任务中的潜在空间动态,并将动态模型传送到目标任务用作基于模型的常规程序。我们的算法适用于观察空间的彻底变化(例如,从向量的基于矢量的观察到图像的观察),没有任何任务映射或目标任务的任何先前知识。实证结果表明,我们的算法显着提高了目标任务中学习的效率和稳定性。
translated by 谷歌翻译
基于模型的增强学习(RL)是一种通过利用学习的单步动力学模型来计划想象中的动作来学习复杂行为的样本效率方法。但是,计划为长马操作计划的每项行动都是不切实际的,类似于每个肌肉运动的人类计划。相反,人类有效地计划具有高级技能来解决复杂的任务。从这种直觉中,我们提出了一个基于技能的RL框架(SKIMO),该框架能够使用技能动力学模型在技能空间中进行计划,该模型直接预测技能成果,而不是预测中级状态中的所有小细节,逐步。为了准确有效的长期计划,我们共同学习了先前经验的技能动力学模型和技能曲目。然后,我们利用学到的技能动力学模型准确模拟和计划技能空间中的长范围,这可以有效地学习长摩盛,稀疏的奖励任务。导航和操纵域中的实验结果表明,Skimo扩展了基于模型的方法的时间范围,并提高了基于模型的RL和基于技能的RL的样品效率。代码和视频可在\ url {https://clvrai.com/skimo}上找到
translated by 谷歌翻译
强化学习(RL)在机器人中的应用通常受高数据需求的限制。另一方面,许多机器人场景中容易获得近似模型,使基于模型的方法,如规划数据有效的替代方案。尽管如此,这些方法的性能遭受了模型不精确或错误。从这个意义上讲,RL和基于模型的规划者的各个优势和弱点是。在目前的工作中,我们调查如何将两种方法集成到结合其优势的一个框架中。我们介绍了学习执行(L2E),从而利用近似计划中包含的信息学习有关计划的普遍政策。在我们的机器人操纵实验中,与纯RL,纯规划或基线方法相比,L2E在结合学习和规划的基线方法时表现出增加的性能。
translated by 谷歌翻译
Meta强化学习(META-RL)旨在学习一项政策,同时并迅速适应新任务。它需要大量从培训任务中汲取的数据,以推断任务之间共享的共同结构。如果没有沉重的奖励工程,长期任务中的稀疏奖励加剧了元RL样品效率的问题。 Meta-RL中的另一个挑战是任务之间难度级别的差异,这可能会导致一个简单的任务主导共享策略的学习,从而排除政策适应新任务。这项工作介绍了一个新颖的目标功能,可以在培训任务中学习动作翻译。从理论上讲,我们可以验证带有操作转换器的传输策略的值可以接近源策略的值和我们的目标函数(大约)上限的值差。我们建议将动作转换器与基于上下文的元元算法相结合,以更好地收集数据,并在元训练期间更有效地探索。我们的方法从经验上提高了稀疏奖励任务上元RL算法的样本效率和性能。
translated by 谷歌翻译
在本文中,我们介绍了潜在的探索(LGE),这是一种基于探索加固学习(RL)的探索范式的简单而通用的方法。最初引入了Go-explore,并具有强大的域知识约束,以将状态空间划分为单元。但是,在大多数实际情况下,从原始观察中汲取域知识是复杂而乏味的。如果细胞分配不足以提供信息,则可以完全无法探索环境。我们认为,可以通过利用学习的潜在表示,可以将Go-explore方法推广到任何环境,而无需细胞。因此,我们表明LGE可以灵活地与学习潜在表示的任何策略相结合。我们表明,LGE虽然比Go-explore更简单,但在多个硬探索环境上纯粹的探索方面,更强大,并且优于所有最先进的算法。 LGE实现可在https://github.com/qgallouedec/lge上作为开源。
translated by 谷歌翻译
由于在存在障碍物和高维视觉观测的情况下,由于在存在障碍和高维视觉观测的情况下,学习复杂的操纵任务是一个具有挑战性的问题。事先工作通过整合运动规划和强化学习来解决勘探问题。但是,运动计划程序增强策略需要访问状态信息,该信息通常在现实世界中不可用。为此,我们建议通过(1)视觉行为克隆以通过(1)视觉行为克隆来将基于国家的运动计划者增强策略,以删除运动计划员依赖以及其抖动运动,以及(2)基于视觉的增强学习来自行为克隆代理的平滑轨迹的指导。我们在阻塞环境中的三个操作任务中评估我们的方法,并将其与各种加固学习和模仿学习基线进行比较。结果表明,我们的框架是高度采样的和优于最先进的算法。此外,与域随机化相结合,我们的政策能够用零击转移到未经分散的人的未经环境环境。 https://clvrai.com/mopa-pd提供的代码和视频
translated by 谷歌翻译
目标条件层次结构增强学习(HRL)是扩大强化学习(RL)技术的有前途的方法。但是,由于高级的动作空间,即目标空间很大。在大型目标空间中进行搜索对于高级子观念和低级政策学习都构成了困难。在本文中,我们表明,可以使用邻接约束来限制从整个目标空间到当前状态的$ k $步骤相邻区域的高级动作空间,从而有效缓解此问题。从理论上讲,我们证明在确定性的马尔可夫决策过程(MDP)中,所提出的邻接约束保留了最佳的层次结构策略,而在随机MDP中,邻接约束诱导了由MDP的过渡结构确定的有界状态价值次数。我们进一步表明,可以通过培训可以区分邻近和非贴种亚目标的邻接网络来实际实现此约束。对离散和连续控制任务的实验结果,包括挑战性的机器人运动和操纵任务,表明合并邻接性约束可显着提高最先进的目标条件条件的HRL方法的性能。
translated by 谷歌翻译
机器人学习中流行的范式是为每个新机器人从头开始训练一项政策。这不仅效率低下,而且对于复杂的机器人而言通常不切实际。在这项工作中,我们考虑了将政策转移到具有显着不同参数(例如运动学和形态)的两个不同机器人中的问题。通过匹配动作或状态过渡分布(包括模仿学习方法)来训练新政策的现有方法,由于最佳动作和/或状态分布在不同的机器人中不匹配而失败。在本文中,我们提出了一种名为$ Revolver $的新方法,该方法使用连续进化模型用于物理模拟器中实现的机器人政策转移。我们通过找到机器人参数的连续进化变化,在源机器人和目标机器人之间进行了插值。源机器人的专家政策是通过逐渐发展为目标机器人的一系列中间机器人的训练来转移的。物理模拟器上的实验表明,所提出的连续进化模型可以有效地跨机器人转移策略,并在新机器人上实现卓越的样品效率。在稀疏的奖励环境中,提出的方法尤其有利,在稀疏奖励环境中,探索可以大大减少。代码在https://github.com/xingyul/revolver上发布。
translated by 谷歌翻译
强化学习可以培训有效执行复杂任务的政策。然而,对于长地平线任务,这些方法的性能与地平线脱落,通常需要推理和构成较低级别的技能。等级强化学习旨在通过为行动抽象提供一组低级技能来实现这一点。通过抽象空间状态,层次结构也可以进一步提高这一点。我们对适当的状态抽象应取决于可用的较低级别策略的功能。我们提出了价值函数空间:通过使用与每个较低级别的技能对应的值函数来产生这种表示的简单方法。这些价值函数捕获场景的可取性,从而形成了紧凑型摘要任务相关信息的表示,并强大地忽略了分散的人。迷宫解决和机器人操纵任务的实证评估表明,我们的方法提高了长地平的性能,并且能够比替代的无模型和基于模型的方法能够更好的零拍泛化。
translated by 谷歌翻译
我们提出了一种层次结构的增强学习方法Hidio,可以以自我监督的方式学习任务不合时宜的选项,同时共同学习利用它们来解决稀疏的奖励任务。与当前倾向于制定目标的低水平任务或预定临时的低级政策不同的层次RL方法不同,Hidio鼓励下级选项学习与手头任务无关,几乎不需要假设或很少的知识任务结构。这些选项是通过基于选项子对象的固有熵最小化目标来学习的。博学的选择是多种多样的,任务不可能的。在稀疏的机器人操作和导航任务的实验中,Hidio比常规RL基准和两种最先进的层次RL方法,其样品效率更高。
translated by 谷歌翻译
For an autonomous agent to fulfill a wide range of user-specified goals at test time, it must be able to learn broadly applicable and general-purpose skill repertoires. Furthermore, to provide the requisite level of generality, these skills must handle raw sensory input such as images. In this paper, we propose an algorithm that acquires such general-purpose skills by combining unsupervised representation learning and reinforcement learning of goal-conditioned policies. Since the particular goals that might be required at test-time are not known in advance, the agent performs a self-supervised "practice" phase where it imagines goals and attempts to achieve them. We learn a visual representation with three distinct purposes: sampling goals for self-supervised practice, providing a structured transformation of raw sensory inputs, and computing a reward signal for goal reaching. We also propose a retroactive goal relabeling scheme to further improve the sample-efficiency of our method. Our off-policy algorithm is efficient enough to learn policies that operate on raw image observations and goals for a real-world robotic system, and substantially outperforms prior techniques. * Equal contribution. Order was determined by coin flip.
translated by 谷歌翻译
我们提出了一种新型的参数化技能学习算法,旨在学习可转移的参数化技能并将其合成为新的动作空间,以支持长期任务中的有效学习。我们首先提出了新颖的学习目标 - 以轨迹为中心的多样性和平稳性 - 允许代理商能够重复使用的参数化技能。我们的代理商可以使用这些学习的技能来构建时间扩展的参数化行动马尔可夫决策过程,我们为此提出了一种层次的参与者 - 批判算法,旨在通过学习技能有效地学习高级控制政策。我们从经验上证明,所提出的算法使代理能够解决复杂的长途障碍源环境。
translated by 谷歌翻译
增强学习(RL)研究领域非常活跃,并具有重要的新贡献;特别是考虑到深RL(DRL)的新兴领域。但是,仍然需要解决许多科学和技术挑战,其中我们可以提及抽象行动的能力或在稀疏回报环境中探索环境的难以通过内在动机(IM)来解决的。我们建议通过基于信息理论的新分类法调查这些研究工作:我们在计算上重新审视了惊喜,新颖性和技能学习的概念。这使我们能够确定方法的优势和缺点,并展示当前的研究前景。我们的分析表明,新颖性和惊喜可以帮助建立可转移技能的层次结构,从而进一步抽象环境并使勘探过程更加健壮。
translated by 谷歌翻译
从视觉感觉数据中控制人造代理是一项艰巨的任务。强化学习(RL)算法可以在这方面取得成功,但需要代理与环境之间进行大量相互作用。为了减轻该问题,无监督的RL建议采用自我监督的互动和学习,以更快地适应未来的任务。但是,目前的无监督策略是否可以改善概括能力,尤其是在视觉控制设置中。在这项工作中,我们为数据有效的视觉控制设计了有效的无监督RL策略。首先,我们表明,使用无监督的RL收集的数据预先训练的世界模型可以促进适应未来的任务。然后,我们与我们的混合计划者分析了一些设计选择,以有效地适应了代理的预训练组件,并在想象中学习和计划,并与我们的混合计划者一起使用,我们将其dub dyna-mpc进行了。通过结合一项大规模实证研究的发现,我们建立了一种方法,该方法强烈改善了无监督的RL基准测试的性能,需要20美元$ \ times $ $ $ $ $ \少于数据以符合监督方法的性能。该方法还表明了在现实词的RL基准测试上的稳健性能,暗示该方法概括为嘈杂的环境。
translated by 谷歌翻译