仅国家模仿学习的最新进展将模仿学习的适用性扩展到现实世界中的范围,从而减轻了观察专家行动的需求。但是,现有的解决方案只学会从数据中提取州对行动映射策略,而无需考虑专家如何计划到目标。这阻碍了利用示威游行并限制政策的灵活性的能力。在本文中,我们介绍了解耦政策优化(DEPO),该策略优化(DEPO)明确将策略脱离为高级状态计划者和逆动力学模型。借助嵌入式的脱钩策略梯度和生成对抗训练,DEPO可以将知识转移到不同的动作空间或状态过渡动态,并可以将规划师推广到无示威的状态区域。我们的深入实验分析表明,DEPO在学习最佳模仿性能的同时学习通用目标状态计划者的有效性。我们证明了DEPO通过预训练跨任务转移的吸引力,以及与各种技能共同培训的潜力。
translated by 谷歌翻译
In reinforcement learning applications like robotics, agents usually need to deal with various input/output features when specified with different state/action spaces by their developers or physical restrictions. This indicates unnecessary re-training from scratch and considerable sample inefficiency, especially when agents follow similar solution steps to achieve tasks. In this paper, we aim to transfer similar high-level goal-transition knowledge to alleviate the challenge. Specifically, we propose PILoT, i.e., Planning Immediate Landmarks of Targets. PILoT utilizes the universal decoupled policy optimization to learn a goal-conditioned state planner; then, distills a goal-planner to plan immediate landmarks in a model-free style that can be shared among different agents. In our experiments, we show the power of PILoT on various transferring challenges, including few-shot transferring across action spaces and dynamics, from low-dimensional vector states to image inputs, from simple robot to complicated morphology; and we also illustrate a zero-shot transfer solution from a simple 2D navigation task to the harder Ant-Maze task.
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
强化学习(RL)通过与环境相互作用的试验过程解决顺序决策问题。尽管RL在玩复杂的视频游戏方面取得了巨大的成功,但在现实世界中,犯错误总是不希望的。为了提高样本效率并从而降低错误,据信基于模型的增强学习(MBRL)是一个有前途的方向,它建立了环境模型,在该模型中可以进行反复试验,而无需实际成本。在这项调查中,我们对MBRL进行了审查,重点是Deep RL的最新进展。对于非壮观环境,学到的环境模型与真实环境之间始终存在概括性错误。因此,非常重要的是分析环境模型中的政策培训与实际环境中的差异,这反过来又指导了更好的模型学习,模型使用和政策培训的算法设计。此外,我们还讨论了其他形式的RL,包括离线RL,目标条件RL,多代理RL和Meta-RL的最新进展。此外,我们讨论了MBRL在现实世界任务中的适用性和优势。最后,我们通过讨论MBRL未来发展的前景来结束这项调查。我们认为,MBRL在被忽略的现实应用程序中具有巨大的潜力和优势,我们希望这项调查能够吸引更多关于MBRL的研究。
translated by 谷歌翻译
离线强化学习(RL)任务要求代理从预先收集的数据集中学习,没有与环境进行进一步的交互。尽管有可能超越行为政策,但基于RL的方法通常是不切实际的,因为培训不稳定并引导外推错误,这始终需要通过在线评估进行仔细的超参数调整。相比之下,离线模仿学习(IL)没有这样的问题,因为它直接在不估计值函数的情况下直接了解策略。然而,IL通常限制在行为政策的能力,并且倾向于从政策混合收集的数据集中学习平庸行为。在本文中,我们的目标是利用IL但缓解这种缺点。观察行为克隆能够使用较少的数据模仿邻近的策略,我们提出\ Textit {课程脱机仿制学习(线圈)},它利用具有更高回报的自适应邻近策略的体验挑选策略,并提高了当前策略沿课程阶段。在连续控制基准测试中,我们将线圈与基于仿制的和基于RL的方法进行比较,表明它不仅避免了在混合数据集上学习平庸行为,而且甚至与最先进的离线RL方法竞争。
translated by 谷歌翻译
在许多顺序决策问题(例如,机器人控制,游戏播放,顺序预测),人类或专家数据可用包含有关任务的有用信息。然而,来自少量专家数据的模仿学习(IL)可能在具有复杂动态的高维环境中具有挑战性。行为克隆是一种简单的方法,由于其简单的实现和稳定的收敛而被广泛使用,但不利用涉及环境动态的任何信息。由于对奖励和政策近似器或偏差,高方差梯度估计器,难以在实践中难以在实践中努力训练的许多现有方法。我们介绍了一种用于动态感知IL的方法,它通过学习单个Q函数来避免对抗训练,隐含地代表奖励和策略。在标准基准测试中,隐式学习的奖励显示与地面真实奖励的高正面相关性,说明我们的方法也可以用于逆钢筋学习(IRL)。我们的方法,逆软Q学习(IQ-Learn)获得了最先进的结果,在离线和在线模仿学习设置中,显着优于现有的现有方法,这些方法都在所需的环境交互和高维空间中的可扩展性中,通常超过3倍。
translated by 谷歌翻译
仿制学习(IL)是一个框架,了解从示范中模仿专家行为。最近,IL显示了高维和控制任务的有希望的结果。然而,IL通常遭受环境互动方面的样本低效率,这严重限制了它们对模拟域的应用。在工业应用中,学习者通常具有高的相互作用成本,与环境的互动越多,对环境的损害越多,学习者本身就越多。在本文中,我们努力通过引入逆钢筋学习的新颖方案来提高样本效率。我们的方法,我们调用\ texit {model redion函数基础的模仿学习}(mrfil),使用一个集合动态模型作为奖励功能,是通过专家演示培训的内容。关键的想法是通过在符合专家示范分布时提供积极奖励,为代理商提供与漫长地平线相匹配的演示。此外,我们展示了新客观函数的收敛保证。实验结果表明,与IL方法相比,我们的算法达到了竞争性能,并显着降低了环境交互。
translated by 谷歌翻译
我们提出了状态匹配的离线分布校正估计(SMODICE),这是一种新颖且基于多功能回归的离线模仿学习(IL)算法,该算法是通过状态占用匹配得出的。我们表明,SMODICE目标通过在表格MDP中的Fenchel二元性和一个分析解决方案的应用来接受一个简单的优化过程。不需要访问专家的行动,可以将Smodice有效地应用于三个离线IL设置:(i)模仿观察值(IFO),(ii)IFO具有动态或形态上不匹配的专家,以及(iii)基于示例的加固学习,这些学习我们表明可以将其公式为州占领的匹配问题。我们在GridWorld环境以及高维离线基准上广泛评估了Smodice。我们的结果表明,Smodice对于所有三个问题设置都有效,并且在前最新情况下均明显胜过。
translated by 谷歌翻译
本文解决了逆增强学习(IRL)的问题 - 从观察其行为中推断出代理的奖励功能。 IRL可以为学徒学习提供可概括和紧凑的代表,并能够准确推断人的偏好以帮助他们。 %并提供更准确的预测。但是,有效的IRL具有挑战性,因为许多奖励功能可以与观察到的行为兼容。我们专注于如何利用先前的强化学习(RL)经验,以使学习这些偏好更快,更高效。我们提出了IRL算法基础(通过样本中的连续功能意图推断行为获取行为),该算法利用多任务RL预培训和后继功能,使代理商可以为跨越可能的目标建立强大的基础,从而跨越可能的目标。给定的域。当仅接触一些专家演示以优化新颖目标时,代理商会使用其基础快速有效地推断奖励功能。我们的实验表明,我们的方法非常有效地推断和优化显示出奖励功能,从而准确地从少于100个轨迹中推断出奖励功能。
translated by 谷歌翻译
离线目标条件的强化学习(GCRL)承诺以从纯粹的离线数据集实现各种目标的形式的通用技能学习。我们提出$ \ textbf {go} $ al-al-conditioned $ f $ - $ \ textbf {a} $ dvantage $ \ textbf {r} $ egression(gofar),这是一种基于新颖的回归gcrl gcrl algorithm,它源自州越来越多匹配的视角;关键的直觉是,可以将目标任务提出为守护动态的模仿者和直接传送到目标的专家代理之间的状态占用匹配问题。与先前的方法相反,Gofar不需要任何事后重新标签,并且对其价值和策略网络享有未融合的优化。这些独特的功能允许Gofar具有更好的离线性能和稳定性以及统计性能保证,这对于先前的方法无法实现。此外,我们证明了Gofar的训练目标可以重新使用,以从纯粹的离线源数据域数据中学习独立于代理的目标条件计划的计划者,这可以使零射击传输到新的目标域。通过广泛的实验,我们验证了Gofar在各种问题设置和任务中的有效性,显着超过了先前的先验。值得注意的是,在真正的机器人灵活性操纵任务上,虽然没有其他方法取得了有意义的进步,但Gofar获得了成功实现各种目标的复杂操纵行为。
translated by 谷歌翻译
Designing a safe and human-like decision-making system for an autonomous vehicle is a challenging task. Generative imitation learning is one possible approach for automating policy-building by leveraging both real-world and simulated decisions. Previous work that applies generative imitation learning to autonomous driving policies focuses on learning a low-level controller for simple settings. However, to scale to complex settings, many autonomous driving systems combine fixed, safe, optimization-based low-level controllers with high-level decision-making logic that selects the appropriate task and associated controller. In this paper, we attempt to bridge this gap in complexity by employing Safety-Aware Hierarchical Adversarial Imitation Learning (SHAIL), a method for learning a high-level policy that selects from a set of low-level controller instances in a way that imitates low-level driving data on-policy. We introduce an urban roundabout simulator that controls non-ego vehicles using real data from the Interaction dataset. We then demonstrate empirically that even with simple controller options, our approach can produce better behavior than previous approaches in driver imitation that have difficulty scaling to complex environments. Our implementation is available at https://github.com/sisl/InteractionImitation.
translated by 谷歌翻译
需要大量人类努力和迭代的奖励功能规范仍然是通过深入的强化学习来学习行为的主要障碍。相比之下,提供所需行为的视觉演示通常会提供一种更简单,更自然的教师的方式。我们考虑为代理提供了一个固定的视觉演示数据集,说明了如何执行任务,并且必须学习使用提供的演示和无监督的环境交互来解决任务。此设置提出了许多挑战,包括对视觉观察的表示,由于缺乏固定的奖励或学习信号而导致的,由于高维空间而引起的样本复杂性以及学习不稳定。为了解决这些挑战,我们开发了一种基于变异模型的对抗模仿学习(V-Mail)算法。基于模型的方法为表示学习,实现样本效率并通过实现派利学习来提高对抗性训练的稳定性提供了强烈的信号。通过涉及几种基于视觉的运动和操纵任务的实验,我们发现V-Mail以样本有效的方式学习了成功的视觉运动策略,与先前的工作相比,稳定性更高,并且还可以实现较高的渐近性能。我们进一步发现,通过传输学习模型,V-Mail可以从视觉演示中学习新任务,而无需任何其他环境交互。所有结果在内的所有结果都可以在\ url {https://sites.google.com/view/variational-mail}在线找到。
translated by 谷歌翻译
最近,目睹了利用专家国家在模仿学习(IL)中的各种成功应用。然而,来自视觉输入(ILFVI)的另一个IL设定 - IL,它通过利用在线视觉资源而具有更大的承诺,它具有低数据效率和良好的性能,从政策学习方式和高度产生了差 - 宣称视觉输入。我们提出了由禁止策略学习方式,数据增强和编码器技术组成的OPIFVI(视觉输入的偏离策略模仿),分别分别解决所提到的挑战。更具体地,为了提高数据效率,OPIFVI以脱策方式进行IL,可以多次使用采样数据。此外,我们提高了opifvi与光谱归一化的稳定性,以减轻脱助政策培训的副作用。我们认为代理商的ILFVI表现不佳的核心因素可能不会从视觉输入中提取有意义的功能。因此,Opifvi采用计算机愿望的数据增强,以帮助列车编码器,可以更好地从视觉输入中提取功能。另外,对编码器的梯度背交量的特定结构旨在稳定编码器训练。最后,我们证明OPIFVI能够实现专家级性能和优于现有的基线,无论是通过使用Deepmind控制套件的广泛实验,无论视觉演示还是视觉观测。
translated by 谷歌翻译
本文考虑了从专家演示中学习机器人运动和操纵任务。生成对抗性模仿学习(GAIL)训练一个区分专家与代理转换区分开的歧视者,进而使用歧视器输出定义的奖励来优化代理商的策略生成器。这种生成的对抗训练方法非常强大,但取决于歧视者和发电机培训之间的微妙平衡。在高维问题中,歧视训练可能很容易过度拟合或利用与任务 - 核定功能进行过渡分类的关联。这项工作的一个关键见解是,在合适的潜在任务空间中进行模仿学习使训练过程稳定,即使在挑战高维问题中也是如此。我们使用动作编码器模型来获得低维的潜在动作空间,并使用对抗性模仿学习(Lapal)训练潜在政策。可以从州行动对脱机来训练编码器模型,以获得任务无关的潜在动作表示或与歧视器和发电机培训同时在线获得,以获得任务意识到的潜在行动表示。我们证明了Lapal训练是稳定的,具有近乎单的性能的改进,并在大多数运动和操纵任务中实现了专家性能,而Gail基线收敛速度较慢,并且在高维环境中无法实现专家的表现。
translated by 谷歌翻译
Hierarchical Reinforcement Learning (HRL) algorithms have been demonstrated to perform well on high-dimensional decision making and robotic control tasks. However, because they solely optimize for rewards, the agent tends to search the same space redundantly. This problem reduces the speed of learning and achieved reward. In this work, we present an Off-Policy HRL algorithm that maximizes entropy for efficient exploration. The algorithm learns a temporally abstracted low-level policy and is able to explore broadly through the addition of entropy to the high-level. The novelty of this work is the theoretical motivation of adding entropy to the RL objective in the HRL setting. We empirically show that the entropy can be added to both levels if the Kullback-Leibler (KL) divergence between consecutive updates of the low-level policy is sufficiently small. We performed an ablative study to analyze the effects of entropy on hierarchy, in which adding entropy to high-level emerged as the most desirable configuration. Furthermore, a higher temperature in the low-level leads to Q-value overestimation and increases the stochasticity of the environment that the high-level operates on, making learning more challenging. Our method, SHIRO, surpasses state-of-the-art performance on a range of simulated robotic control benchmark tasks and requires minimal tuning.
translated by 谷歌翻译
交通模拟器是运输系统运营和计划中的重要组成部分。常规的交通模拟器通常采用校准的物理跟踪模型来描述车辆的行为及其与交通环境的相互作用。但是,没有普遍的物理模型可以准确地预测不同情况下车辆行为的模式。鉴于交通动态的非平稳性质,固定的物理模型在复杂的环境中往往不太有效。在本文中,我们将流量模拟作为一个反向加强学习问题,并提出一个参数共享对抗性逆增强学习模型,以进行动态射击模拟学习。我们提出的模型能够模仿现实世界中车辆的轨迹,同时恢复奖励功能,从而揭示了车辆的真实目标,这是不同动态的不变。关于合成和现实世界数据集的广泛实验表明,与最先进的方法相比,我们方法的出色性能及其对流量变化动态的鲁棒性。
translated by 谷歌翻译
连续空间中有效有效的探索是将加固学习(RL)应用于自主驾驶的核心问题。从专家演示或为特定任务设计的技能可以使探索受益,但是它们通常是昂贵的,不平衡/次优的,或者未能转移到各种任务中。但是,人类驾驶员可以通过在整个技能空间中进行高效和结构性探索而不是具有特定于任务的技能的有限空间来适应各种驾驶任务。受上述事实的启发,我们提出了一种RL算法,以探索所有可行的运动技能,而不是一组有限的特定于任务和以对象为中心的技能。没有演示,我们的方法仍然可以在各种任务中表现出色。首先,我们以纯粹的运动角度构建了一个任务不合时宜的和以自我为中心的(TAEC)运动技能库,该运动技能库是足够多样化的,可以在不同的复杂任务中重复使用。然后,将运动技能编码为低维的潜在技能空间,其中RL可以有效地进行探索。在各种具有挑战性的驾驶场景中的验证表明,我们提出的方法TAEC-RL在学习效率和任务绩效方面的表现显着优于其同行。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
在本文中,我们提出了一个健壮的模仿学习(IL)框架,该框架在扰动环境动态时改善了IL的稳健性。在单个环境中训练的现有IL框架可能会因环境动力学的扰动而灾难性地失败,因为它无法捕获可以更改潜在环境动态的情况。我们的框架有效地处理了具有不同动态的环境,通过模仿了采样环境动力学中的多个专家,以增强环境动力学的一般变化中的鲁棒性。为了强力模仿多个样本专家,我们将代理商政策与每个样本专家之间的Jensen-Shannon分歧降低了风险。数值结果表明,与常规IL基准相比,我们的算法显着提高了针对动力学扰动的鲁棒性。
translated by 谷歌翻译
与一组复杂的RL问题有关的目标条件加固学习(GCRL)训练代理在特定情况下实现不同的目标。与仅根据州或观察结果了解政策的标准RL解决方案相比,GCRL还要求代理商根据不同的目标做出决策。在这项调查中,我们对GCRL的挑战和算法进行了全面的概述。首先,我们回答该领域研究的基本问题。然后,我们解释了如何代表目标并介绍如何从不同角度设计现有解决方案。最后,我们得出结论,并讨论最近研究重点的潜在未来前景。
translated by 谷歌翻译