晚期钆增强磁共振成像(LGE MRI)通常用于可视化和量化左心房(LA)疤痕。疤痕的位置和程度提供了心理生理学和心房颤动进展的重要信息(AF)。因此,LGE MRI的La Scar分段和量化可用于AF患者的计算机辅助诊断和治疗分层。由于手动描绘可能是耗时的,并且经过专家内和专家间变异性,因此非常需要自动化这种计算,这然而仍然仍然具有挑战性和研究。本文旨在为La腔,墙壁,瘢痕和消融差距分割和LGE MRI的定量提供系统审查,以及AF研究的相关文献。具体而言,我们首先总结AF相关的成像技术,特别是LGE MRI。然后,我们详细介绍了四个计算任务的方法,并总结了每个任务中应用的验证策略。最后,概述了未来可能的未来发展,简要调查了上述方法的潜在临床应用。审查表明,该主题的研究仍处于早期阶段。虽然已经提出了几种方法,但特别是对于LA分割,由于与图像采集的高度变化相关的性能问题和图像采集差异有关的性能问题,仍有很大的算法发展。
translated by 谷歌翻译
超声(US)成像数据的分割和空间比对在头三个月获得的数据对于监测整个关键时期的人类胚胎生长和发育至关重要。当前的方法是手动或半自动的,因此非常耗时,容易出现错误。为了自动执行这些任务,我们提出了一个多ATLAS框架,用于使用深度学习,以最小的监督使用深度学习,以自动分割和空间对齐。我们的框架学会了将胚胎注册到地图集,该地图集由在胎龄(GA)范围内获取的美国图像组成,分段并在空间上与预定义的标准方向排列。由此,我们可以得出胚胎的分割,并将胚胎放在标准方向上。使用在8+0到12+6周GA的美国图像,并选择了八个受试者作为地图集。我们评估了不同的融合策略,以合并多个地图集:1)使用单个主题中的地图集训练框架,2)使用所有可用地图的数据训练框架和3)3)结合每个受试者训练的框架。为了评估性能,我们计算了测试集的骰子分数。我们发现,使用所有可用地图的训练框架优于结合的结合,与对单个主题进行培训的所有框架中的最佳框架相比,给出了类似的结果。此外,我们发现,从所有可用的地图中,从GA最接近的四个图像中选择图像,无论个人质量如何,都以0.72的中位数分数获得了最佳效果。我们得出的结论是,我们的框架可以准确地分割和空间对齐孕妇在3D US图像中对胚胎进行对齐,并且对于可用地图中存在的质量变化是可靠的。我们的代码可在以下网址公开获取:https://github.com/wapbastiaansen/multi-atlas-seg-reg。
translated by 谷歌翻译
小儿肌肉骨骼系统的临床诊断依赖于医学成像检查的分析。在医学图像处理管道中,使用深度学习算法的语义分割使人可以自动生成患者特定的三维解剖模型,这对于形态学评估至关重要。但是,小儿成像资源的稀缺性可能导致单个深层分割模型的准确性和泛化性能降低。在这项研究中,我们建议设计一个新型的多任务多任务多域学习框架,在该框架中,单个分割网络对由解剖学的不同部分产生的多个数据集进行了优化。与以前的方法不同,我们同时考虑多个强度域和分割任务来克服小儿数据的固有稀缺性,同时利用成像数据集之间的共享特征。为了进一步提高概括能力,我们从自然图像分类中采用了转移学习方案,以及旨在在共享表示中促进域特异性群集的多尺度对比正则化,以及多连接解剖学先验来执行解剖学上一致的预测。我们评估了使用脚踝,膝盖和肩关节的三个稀缺和小儿成像数据集进行骨分割的贡献。我们的结果表明,所提出的方法在骰子指标中的表现优于个人,转移和共享分割方案,并具有统计学上足够的利润。拟议的模型为智能使用成像资源和更好地管理小儿肌肉骨骼疾病提供了新的观点。
translated by 谷歌翻译
随着深度学习方法的进步,如深度卷积神经网络,残余神经网络,对抗网络的进步。 U-Net架构最广泛利用生物医学图像分割,以解决目标区域或子区域的识别和检测的自动化。在最近的研究中,基于U-Net的方法在不同应用中显示了最先进的性能,以便在脑肿瘤,肺癌,阿尔茨海默,乳腺癌等疾病的早期诊断和治疗中发育计算机辅助诊断系统等,使用各种方式。本文通过描述U-Net框架来提出这些方法的成功,然后通过执行1)型号的U-Net变体进行综合分析,2)模特内分类,建立更好的见解相关的挑战和解决方案。此外,本文还强调了基于U-Net框架在持续的大流行病,严重急性呼吸综合征冠状病毒2(SARS-COV-2)中的贡献也称为Covid-19。最后,分析了这些U-Net变体的优点和相似性以及生物医学图像分割所涉及的挑战,以发现该领域的未来未来的研究方向。
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译
多发性硬化症(MS)是中枢神经系统的慢性炎症和退行性疾病,其特征在于,白色和灰质的外观与个体患者的神经症状和标志进行地平整相关。磁共振成像(MRI)提供了详细的体内结构信息,允许定量和分类MS病变,其批判性地通知疾病管理。传统上,MS病变在2D MRI切片上手动注释,一个流程效率低,易于观察室内误差。最近,已经提出了自动统计成像分析技术以基于MRI体素强度检测和分段段病变。然而,它们的有效性受到MRI数据采集技术的异质性和MS病变的外观的限制。通过直接从图像学习复杂的病变表现,深度学习技术已经在MS病变分割任务中取得了显着的突破。在这里,我们提供了全面审查最先进的自动统计和深度学习MS分段方法,并讨论当前和未来的临床应用。此外,我们审查了域适应等技术策略,以增强现实世界临床环境中的MS病变分段。
translated by 谷歌翻译
语义图像分割是手术中的背景知识和自治机器人的重要前提。本领域的状态专注于在微创手术期间获得的传统RGB视频数据,但基于光谱成像数据的全景语义分割并在开放手术期间获得几乎没有注意到日期。为了解决文献中的这种差距,我们正在研究基于在开放手术环境中获得的猪的高光谱成像(HSI)数据的以下研究问题:(1)基于神经网络的HSI数据的充分表示是完全自动化的器官分割,尤其是关于数据的空间粒度(像素与Superpixels与Patches与完整图像)的空间粒度? (2)在执行语义器官分割时,是否有利用HSI数据使用HSI数据,即RGB数据和处理的HSI数据(例如氧合等组织参数)?根据基于20猪的506个HSI图像的全面验证研究,共注释了19个类,基于深度的学习的分割性能 - 贯穿模态 - 与输入数据的空间上下文一致。未处理的HSI数据提供优于RGB数据或来自摄像机提供商的处理数据,其中优势随着输入到神经网络的输入的尺寸而增加。最大性能(应用于整个图像的HSI)产生了0.89(标准偏差(SD)0.04)的平均骰子相似度系数(DSC),其在帧间间变异性(DSC为0.89(SD 0.07)的范围内。我们得出结论,HSI可以成为全自动手术场景理解的强大的图像模型,其具有传统成像的许多优点,包括恢复额外功能组织信息的能力。
translated by 谷歌翻译
尽管数据增强和转移学习有所进步,但卷积神经网络(CNNS)难以推广到看不见的域。在分割大脑扫描时,CNN对分辨率和对比度的变化非常敏感:即使在相同的MRI模式内,则性能可能会跨数据集减少。在这里,我们介绍了Synthseg,第一个分段CNN无关紧要对比和分辨率。 Synthseg培训,用从分段上的生成模型采样的合成数据培训。至关重要,我们采用域随机化策略,我们完全随机开启了合成培训数据的对比度和解决。因此,Synthseg可以在没有再培训或微调的情况下对任何目标结构域进行真实扫描,这是首次分析大量的异构临床数据。因为Synthseg仅需要进行培训(无图像),所以它可以从通过不同群体的对象(例如,老化和患病)的自动化方法获得的标签中学习,从而实现广泛的形态变异性的鲁棒性。我们展示了Synthseg在六种方式的5,300扫描和十项决议中,与监督CNN,最先进的域适应和贝叶斯分割相比,它表现出无与伦比的泛化。最后,我们通过将其施加到心脏MRI和CT分割来证明SyntheeG的恒定性。
translated by 谷歌翻译
晚期钆增强磁共振成像(LGE MRI)的左心房(LA)和心房瘢痕分割是临床实践中的重要任务。 %,引导消融治疗和预测心房颤动(AF)患者的治疗结果。然而,由于图像质量差,各种La形状,薄壁和周围增强区域,自动分割仍然具有挑战性。以前的方法通常独立解决了这两个任务,并忽略了洛杉矶和疤痕之间的内在空间关系。在这项工作中,我们开发了一个新的框架,即atrialjsqnet,其中La分段,在La表面上的瘢痕投影以及疤痕量化,在端到端的样式中进行。我们通过明确的表面投影提出了一种形状注意(SA),以利用LA和LA瘢痕之间的固有相关性。具体而言,SA方案嵌入到多任务架构中以执行联合LA分段和瘢痕量化。此外,引入了空间编码(SE)丢失以包含目标的连续空间信息,以便在预测的分割中减少嘈杂的斑块。我们从Miccai2018 La挑战中评估了60 LGE MRIS上提出的框架。在公共数据集上的广泛实验表明了拟议的ATRIALJSQNET的效果,从而实现了最先进的竞争性能。明确探索了LA分割和瘢痕量化之间的相关性,并对这两个任务显示出显着的性能改进。一旦稿件接受通过https://zmiclab.github.io/projects.html,就会公开发布的代码和结果。
translated by 谷歌翻译
迄今为止,已经提出了几种使用磁共振成像(MRI)鉴定/分割多发性硬化病(MS)病变的自动化策略,但它们的表现均优于人类专家,它们的作用差异很大。这主要是由于:MRI不稳定性起源于:歧义; MS的特殊变异; MRI关于MS的非特异性。医师部分管理依赖放射学/临床/解剖背景和经验的歧义产生的不确定性。为了模仿人类的诊断,我们提出了一个自动化框架,用于基于三个关键概念的MRI识别/分割MS病变的自动框架:1。不确定性建模; 2.两个分别训练的CNN的建议,一个针对病变优化的,另一个针对周围环境的病变进行了优化,分别针对轴向,冠状和矢状方向重复; 3.合奏分类器的定义合并不同CNN收集的信息。提出的框架经过单个成像模式,即流体侵蚀的反转恢复(FLAIR)的2016年MSSEG基准公共数据集进行了训练,验证和测试。与地面真相和7个人类评估者的比较证明,自动化者和人类评估者之间没有显着差异。
translated by 谷歌翻译
迄今为止,迄今为止,众所周知,对广泛的互补临床相关任务进行了全面比较了医学图像登记方法。这限制了采用研究进展,以防止竞争方法的公平基准。在过去五年内已经探讨了许多新的学习方法,但优化,建筑或度量战略的问题非常适合仍然是开放的。 Learn2reg涵盖了广泛的解剖学:脑,腹部和胸部,方式:超声波,CT,MRI,群体:患者内部和患者内部和监督水平。我们为3D注册的培训和验证建立了较低的入境障碍,这帮助我们从20多个独特的团队中汇编了65多个单独的方法提交的结果。我们的互补度量集,包括稳健性,准确性,合理性和速度,使得能够独特地位了解当前的医学图像登记现状。进一步分析监督问题的转移性,偏见和重要性,主要是基于深度学习的方法的优越性,并将新的研究方向开放到利用GPU加速的常规优化的混合方法。
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
医学图像分割的深度学习模型可能会出乎意料地且出乎意料地失败,而与训练图像相比,在不同中心获得的病理案例和图像,标签错误违反了专家知识。此类错误破坏了对医学图像细分的深度学习模型的可信赖性。检测和纠正此类故障的机制对于将该技术安全地转化为诊所至关重要,并且可能是对未来人工智能法规(AI)的要求。在这项工作中,我们提出了一个值得信赖的AI理论框架和一个实用系统,该系统可以使用后备方法和基于Dempster-Shafer理论的失败机制增强任何骨干AI系统。我们的方法依赖于可信赖的AI的可行定义。我们的方法会自动放弃由骨干AI预测的体素级标签,该标签违反了专家知识,并依赖于这些体素的后备。我们证明了拟议的值得信赖的AI方法在最大的报告的胎儿MRI的注释数据集中,由13个中心的540个手动注释的胎儿脑3D T2W MRI组成。我们值得信赖的AI方法改善了在各个中心获得的胎儿脑MRI和各种脑异常的胎儿的最先进的主链AI的鲁棒性。
translated by 谷歌翻译
域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
血氧水平依赖性(BOLD)用母体高氧可以评估胎盘内的氧运输,并已成为研究胎盘功能的有前途的工具。测量信号随着时间的变化需要在时间序列的每个体积中分割胎盘。由于大胆的时间序列中的数量大量,现有研究依靠注册将所有卷映射到手动分段模板。由于胎盘由于胎儿运动,母体运动和收缩而导致大变形,因此这种方法通常会导致大量废弃体积,而注册方法失败。在这项工作中,我们提出了一个基于U-NET神经网络体系结构的机器学习模型,以自动以粗体MRI分割胎盘,并将其应用于时间序列中的每个卷。我们使用边界加权损失函数来准确捕获胎盘形状。我们的模型经过训练和测试,并在91位包含健康胎儿的受试者,胎儿生长限制的胎儿以及BMI高的母亲中进行了测试。当与地面真实标签匹配时,我们的骰子得分为0.83 +/- 0.04,并且我们的模型在粗体时间序列中可靠地分割量氧和高氧点的量。我们的代码和训练有素的模型可在https://github.com/mabulnaga/automatic-placenta-mentegation上获得。
translated by 谷歌翻译
本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
在过去的十年中,卷积神经网络(Convnets)主导了医学图像分析领域。然而,发现脉搏的性能仍然可以受到它们无法模拟图像中体素之间的远程空间关系的限制。最近提出了众多视力变压器来解决哀悼缺点,在许多医学成像应用中展示最先进的表演。变压器可以是用于图像配准的强烈候选者,因为它们的自我注意机制能够更精确地理解移动和固定图像之间的空间对应。在本文中,我们呈现透射帧,一个用于体积医学图像配准的混合变压器-Cromnet模型。我们还介绍了三种变速器的变形,具有两个散晶变体,确保了拓扑保存的变形和产生良好校准的登记不确定性估计的贝叶斯变体。使用来自两个应用的体积医学图像的各种现有的登记方法和变压器架构进行广泛验证所提出的模型:患者间脑MRI注册和幻影到CT注册。定性和定量结果表明,传输和其变体导致基线方法的实质性改进,展示了用于医学图像配准的变压器的有效性。
translated by 谷歌翻译
主要的神经影像学研究推动了1.0 mm以下的3T MRI采集分辨率,以改善结构定义和形态学。然而,只有很少的时间 - 密集的自动化图像分析管道已被验证为高分辨率(雇用)设置。另一方面,有效的深度学习方法很少支持多个固定分辨率(通常1.0 mm)。此外,缺乏标准的杂交数据分辨率以及具有足够覆盖的扫描仪,年龄,疾病或遗传方差的多样化数据的有限可用性会带来额外的,未解决的挑战培训网络。将分辨率独立于基于深度学习的分割,即在一系列不同的体素大小上以其本地分辨率进行分辨率的能力,承诺克服这些挑战,但目前没有这种方法。我们现在通过向决议独立的分割任务(VINN)引入VINOSEIZED独立的神经网络(VINN)来填补这个差距,并呈现FastSurfervinn,(i)建立并实施决议独立,以获得深度学习作为同时支持0.7-1.0 mm的第一种方法分割,(ii)显着优于跨决议的最先进方法,(iii)减轻雇用数据集中存在的数据不平衡问题。总体而言,内部分辨率 - 独立性相互益处雇用和1.0 mm MRI分割。通过我们严格验证的FastSurfervinn,我们将为不同的神经视线镜分析分发一个快速工具。此外,VINN架构表示更广泛应用的有效分辨率的分段方法
translated by 谷歌翻译
目的:慢性主动脉疾病的监测成像,如解剖,依赖于在预定义主动脉地标随时间获得和比较预定义主动脉标志的横截面直径测量。由于缺乏鲁棒工具,横截面平面的方向由高训练的操作员手动定义。我们展示了如何有效地使用诊所中常规收集的手动注释来缓解该任务,尽管在测量中存在不可忽略的互操作器可变性。影响:通过利用不完美,回顾性的临床注释,可以缓解或自动化且重复的成像任务的弊端。方法论:在这项工作中,我们结合了卷积神经网络和不确定量化方法来预测这种横截面的取向。我们使用11个操作员随机处理的临床数据进行培训,并在3个独立运营商处理的较小集合上进行测试,以评估互通器变异性。结果:我们的分析表明,手动选择的横截面平面的特点是10.6 ^ \ CirC $ 10.6 ^ \ riC $和每角度为21.4美元的协议限额为95%我们的方法显示,静态误差减少3.57秒^ \ rIC $($ 40.2 $%)和$ 4.11 ^ \ rIC $($ 32.8 $%),而不是5.4 ^ \ rIC $($ 49.0 $%)和16.0美元^ \ CIRC $($ 74.6 $%)对手动处理。结论:这表明预先存在的注释可以是诊所的廉价资源,以便于易于提出和重复的任务,如横截面提取,以便监测主动脉夹层。
translated by 谷歌翻译