Despite the immense success of neural networks in modeling system dynamics from data, they often remain physics-agnostic black boxes. In the particular case of physical systems, they might consequently make physically inconsistent predictions, which makes them unreliable in practice. In this paper, we leverage the framework of Irreversible port-Hamiltonian Systems (IPHS), which can describe most multi-physics systems, and rely on Neural Ordinary Differential Equations (NODEs) to learn their parameters from data. Since IPHS models are consistent with the first and second principles of thermodynamics by design, so are the proposed Physically Consistent NODEs (PC-NODEs). Furthermore, the NODE training procedure allows us to seamlessly incorporate prior knowledge of the system properties in the learned dynamics. We demonstrate the effectiveness of the proposed method by learning the thermodynamics of a building from the real-world measurements and the dynamics of a simulated gas-piston system. Thanks to the modularity and flexibility of the IPHS framework, PC-NODEs can be extended to learn physically consistent models of multi-physics distributed systems.
translated by 谷歌翻译
With more and more data being collected, data-driven modeling methods have been gaining in popularity in recent years. While physically sound, classical gray-box models are often cumbersome to identify and scale, and their accuracy might be hindered by their limited expressiveness. On the other hand, classical black-box methods, typically relying on Neural Networks (NNs) nowadays, often achieve impressive performance, even at scale, by deriving statistical patterns from data. However, they remain completely oblivious to the underlying physical laws, which may lead to potentially catastrophic failures if decisions for real-world physical systems are based on them. Physically Consistent Neural Networks (PCNNs) were recently developed to address these aforementioned issues, ensuring physical consistency while still leveraging NNs to attain state-of-the-art accuracy. In this work, we scale PCNNs to model building temperature dynamics and propose a thorough comparison with classical gray-box and black-box methods. More precisely, we design three distinct PCNN extensions, thereby exemplifying the modularity and flexibility of the architecture, and formally prove their physical consistency. In the presented case study, PCNNs are shown to achieve state-of-the-art accuracy, even outperforming classical NN-based models despite their constrained structure. Our investigations furthermore provide a clear illustration of NNs achieving seemingly good performance while remaining completely physics-agnostic, which can be misleading in practice. While this performance comes at the cost of computational complexity, PCNNs on the other hand show accuracy improvements of 17-35% compared to all other physically consistent methods, paving the way for scalable physically consistent models with state-of-the-art performance.
translated by 谷歌翻译
由于其高能量强度,建筑物在当前全球能源转型中发挥着重要作用。建筑模型是普遍无处不在的,因为在建筑物的每个阶段都需要它们,即设计,改装和控制操作。基于物理方程式的古典白盒式模型必然遵循物理规律,但其底层结构的具体设计可能会阻碍他们的表现力,从而阻碍他们的准确性。另一方面,黑匣子型号更适合捕获非线性建筑动态,因此通常可以实现更好的准确性,但它们需要大量的数据,并且可能不会遵循物理规律,这是神经网络特别常见的问题(NN)模型。为了抵消这种已知的概括问题,最近介绍了物理知识的NNS,研究人员在NNS的结构中介绍了以底层底层物理法律接地,并避免经典的NN概括问题。在这项工作中,我们介绍了一种新的物理信息的NN架构,被称为身体一致的NN(PCNN),其仅需要过去的运行数据并且没有工程开销,包括在并联运行到经典NN的线性模块中的先前知识。我们正式证明,这些网络是物理上一致的 - 通过设计甚至在看不见的数据 - 关于不同的控制输入和邻近区域的温度。我们在案例研究中展示了他们的表现,其中PCNN比3美元的古典物理型电阻电容模型更好地获得高达50美元的准确性。此外,尽管结构受到约束的结构,但PCNNS在验证数据上对古典NNS对古典NNS进行了类似的性能,使训练数据较少,并保留高表达性以解决泛化问题。
translated by 谷歌翻译
Many dynamical systems -- from robots interacting with their surroundings to large-scale multiphysics systems -- involve a number of interacting subsystems. Toward the objective of learning composite models of such systems from data, we present i) a framework for compositional neural networks, ii) algorithms to train these models, iii) a method to compose the learned models, iv) theoretical results that bound the error of the resulting composite models, and v) a method to learn the composition itself, when it is not known a prior. The end result is a modular approach to learning: neural network submodels are trained on trajectory data generated by relatively simple subsystems, and the dynamics of more complex composite systems are then predicted without requiring additional data generated by the composite systems themselves. We achieve this compositionality by representing the system of interest, as well as each of its subsystems, as a port-Hamiltonian neural network (PHNN) -- a class of neural ordinary differential equations that uses the port-Hamiltonian systems formulation as inductive bias. We compose collections of PHNNs by using the system's physics-informed interconnection structure, which may be known a priori, or may itself be learned from data. We demonstrate the novel capabilities of the proposed framework through numerical examples involving interacting spring-mass-damper systems. Models of these systems, which include nonlinear energy dissipation and control inputs, are learned independently. Accurate compositions are learned using an amount of training data that is negligible in comparison with that required to train a new model from scratch. Finally, we observe that the composite PHNNs enjoy properties of port-Hamiltonian systems, such as cyclo-passivity -- a property that is useful for control purposes.
translated by 谷歌翻译
深神经网络可能会脆弱,并且对小输入扰动可能会导致输出发生重大变化。在本文中,我们采用收缩理论来改善神经odes的鲁棒性(节点)。如果所有具有不同初始条件的解决方案相互融合,则动态系统是合同的。结果,随着时间的推移,在初始条件下的扰动变得越来越少。由于在节点中,输入数据对应于动态系统的初始条件,因此我们显示合同性可以减轻输入扰动的效果。更准确地说,受到哈密顿动力学的节点的启发,我们提出了一类收缩性汉密尔顿节点(CH节点)。通过正确调整标量参数,CH节点可以通过设计确保合并性,并且可以使用标准反向传播进行培训。此外,CH-Nodes享受内置的非爆炸梯度保证,这确保了良好的培训过程。最后,我们证明了CH节点在MNIST图像分类问题上使用嘈杂的测试数据的鲁棒性。
translated by 谷歌翻译
随着数据的不断增加,将现代机器学习方法应用于建模和控制等领域的兴趣爆炸。但是,尽管这种黑盒模型具有灵活性和令人惊讶的准确性,但仍然很难信任它们。结合两种方法的最新努力旨在开发灵活的模型,这些模型仍然可以很好地推广。我们称为混合分析和建模(HAM)的范式。在这项工作中,我们调查了使用数据驱动模型纠正基于错误的物理模型的纠正源术语方法(COSTA)。这使我们能够开发出可以进行准确预测的模型,即使问题的基本物理学尚未得到充分理解。我们将Costa应用于铝电解电池中的Hall-H \'Eroult工艺。我们证明该方法提高了准确性和预测稳定性,从而产生了总体可信赖的模型。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
机器人动态的准确模型对于新颖的操作条件安全和稳定控制和概括至关重要。然而,即使在仔细参数调谐后,手工设计的模型也可能是不够准确的。这激励了使用机器学习技术在训练集的状态控制轨迹上近似机器人动力学。根据其SE(3)姿势和广义速度,并满足能量原理的保护,描述了许多机器人的动态,包括地面,天线和水下车辆。本文提出了在神经常规差分方程(ODE)网络结构的SE(3)歧管上的HamiltonIAN制剂,以近似刚体的动态。与黑匣子颂网络相比,我们的配方通过施工保证了总节能。我们为学习的学习,潜在的SE(3)Hamiltonian动力学开发能量整形和阻尼注射控制,以实现具有各种平台的稳定和轨迹跟踪的统一方法,包括摆锤,刚体和四极其系统。
translated by 谷歌翻译
Relying on recent research results on Neural ODEs, this paper presents a methodology for the design of state observers for nonlinear systems based on Neural ODEs, learning Luenberger-like observers and their nonlinear extension (Kazantzis-Kravaris-Luenberger (KKL) observers) for systems with partially-known nonlinear dynamics and fully unknown nonlinear dynamics, respectively. In particular, for tuneable KKL observers, the relationship between the design of the observer and its trade-off between convergence speed and robustness is analysed and used as a basis for improving the robustness of the learning-based observer in training. We illustrate the advantages of this approach in numerical simulations.
translated by 谷歌翻译
热力学可以看作是高认知水平上物理学的表达。因此,最近在许多领域中实现了其作为帮助机器学习程序获得准确和可信度的预测的潜在偏见。我们回顾热力学如何在学习过程中提供有用的见解。同时,我们研究了要描述给定现象的规模之类的方面的影响,对于此描述的相关变量的选择或可用于学习过程的不同技术。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
分子动力学模拟是科学的基石,允许从系统的热力学调查以分析复杂的分子相互作用。通常,为了创建扩展的分子轨迹,可以是计算昂贵的过程,例如,在运行$ ab-initio $ simulations时。因此,重复这样的计算以获得更准确的热力学或在由细粒度量子相互作用产生的动态中获得更高的分辨率可以是时间和计算的。在这项工作中,我们探讨了不同的机器学习(ML)方法,以提高在后处理步骤内按需的分子动力学轨迹的分辨率。作为概念证明,我们分析了神经杂物,哈密顿网络,经常性神经网络和LSTM等双向神经网络的表现,以及作为参考的单向变体,用于分子动力学模拟(这里是: MD17数据集)。我们发现Bi-LSTMS是表现最佳的模型;通过利用恒温轨迹的局部时对称,它们甚至可以学习远程相关性,并在分子复杂性上显示高稳健性。我们的模型可以达到轨迹插值中最多10美元^ {-4}的准确度,同时忠实地重建了几个无奈复杂的高频分子振动的全周期,使学习和参考轨迹之间的比较难以区分。该工作中报告的结果可以作为更大系统的基线服务(1),以及(2)用于建造更好的MD集成商。
translated by 谷歌翻译
预测在环境中只有部分了解其动态的综合动态现象是各种科学领域的普遍存在问题。虽然纯粹的数据驱动方法在这种情况下可以说是不充分的,但是基于标准的物理建模的方法往往是过于简单的,诱导不可忽略的错误。在这项工作中,我们介绍了适当性框架,是一种具有深度数据驱动模型的微分方程所描述的不完整物理动态的原则方法。它包括将动态分解为两个组件:对我们有一些先验知识的动态的物理组件,以及物理模型错误的数据驱动组件核对。仔细制定学习问题,使得物理模型尽可能多地解释数据,而数据驱动组件仅描述了物理模型不能捕获的信息,不再少。这不仅为这种分解提供了存在和唯一性,而且还确保了可解释性和益处泛化。在三个重要用例中进行的实验,每个代表不同的现象,即反应 - 扩散方程,波动方程和非线性阻尼摆锤,表明,空间程度可以有效地利用近似物理模型来准确地预测系统的演变并正确识别相关的物理参数。
translated by 谷歌翻译
基于哈密顿配方的混合机器学习最近已成功证明了简单的机械系统。在这项工作中,我们在简单的质量弹簧系统和更复杂,更现实的系统上强调方法,具有多个内部和外部端口,包括具有多个连接储罐的系统。我们量化各种条件下的性能,并表明施加不同的假设会极大地影响性能,突出该方法的优势和局限性。我们证明,哈米尔顿港神经网络可以扩展到具有州依赖性端口的更高维度。我们考虑学习具有已知和未知外部端口的系统。哈米尔顿港的公式允许检测偏差,并在删除偏差时仍然提供有效的模型。最后,我们提出了一种对称的高级整合方案,以改善稀疏和嘈杂数据的训练。
translated by 谷歌翻译
网络动力学系统在工程学的整个科学中都是常见的。例如,生物网络,反应网络,电力系统等。对于许多这样的系统,非线性驱动相同(或几乎相同)单位的种群表现出广泛的非平凡行为,例如相干结构的出现(例如,波和模式)或其他显着的动态(例如,同步和混乱,,同步和混乱)。在这项工作中,我们试图推断(i)人口基本单位的固有物理学,(ii)单位之间共享的基本图形结构,以及(iii)给定网络动力学系统的耦合物理,给定淋巴结观察到状态。这些任务是围绕通用微分方程的概念而制定的,在该概念中,未知的动力学系统可以用神经网络近似,数学术语已知先验(尽管具有未知参数)或两者的组合。我们不仅通过研究未来的状态预测,还要研究系统行为对各种网络拓扑的推断来证明这些推理任务的价值。这些方法的有效性和实用性及其应用于规范网络非线性耦合振荡器。
translated by 谷歌翻译
大规模的网络物理系统要求将控制策略分发,即它们仅依靠本地实时测量和与相邻代理的通信。然而,即使在看似简单的情况下,最佳分布式控制(ODC)问题也是非常棘手的。因此,最近的工作已经提出了培训神经网络(NN)分布式控制器。 NN控制器的主要挑战是它们在训练期间和之后不可依赖于训练,即,闭环系统可能不稳定,并且由于消失和爆炸梯度,训练可能失效。在本文中,我们解决了非线性端口 - 哈密顿(PH)系统网络的这些问题,其建模功率从能量系统到非完全车辆和化学反应。具体地,我们采用pH系统的组成特性,以表征具有内置闭环稳定性保证的深哈密顿控制政策,而不管互连拓扑和所选择的NN参数。此外,我们的设置可以利用近来表现良好的神经杂志的结果,以防止通过设计消失消失的梯度现象。数值实验证实了所提出的架构的可靠性,同时匹配通用神经网络策略的性能。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
过去几年目睹了在深入学习框架中纳入物理知识的归纳偏见的兴趣增加。特别地,越来越多的文献一直在探索实施能节能的方式,同时使用来自观察时间序列数据的神经网络来学习动态的神经网络。在这项工作中,我们调查了最近提出的节能神经网络模型,包括HNN,LNN,DELAN,SYMODEN,CHNN,CLNN及其变体。我们提供了这些模型背后的理论的紧凑级,并解释了他们的相似之处和差异。它们的性能在4个物理系统中进行了比较。我们指出了利用一些这些节能模型来设计基于能量的控制器的可能性。
translated by 谷歌翻译
Effective inclusion of physics-based knowledge into deep neural network models of dynamical systems can greatly improve data efficiency and generalization. Such a-priori knowledge might arise from physical principles (e.g., conservation laws) or from the system's design (e.g., the Jacobian matrix of a robot), even if large portions of the system dynamics remain unknown. We develop a framework to learn dynamics models from trajectory data while incorporating a-priori system knowledge as inductive bias. More specifically, the proposed framework uses physics-based side information to inform the structure of the neural network itself, and to place constraints on the values of the outputs and the internal states of the model. It represents the system's vector field as a composition of known and unknown functions, the latter of which are parametrized by neural networks. The physics-informed constraints are enforced via the augmented Lagrangian method during the model's training. We experimentally demonstrate the benefits of the proposed approach on a variety of dynamical systems -- including a benchmark suite of robotics environments featuring large state spaces, non-linear dynamics, external forces, contact forces, and control inputs. By exploiting a-priori system knowledge during training, the proposed approach learns to predict the system dynamics two orders of magnitude more accurately than a baseline approach that does not include prior knowledge, given the same training dataset.
translated by 谷歌翻译
最近,对具有神经网络的物理系统建模和计算的兴趣越来越多。在古典力学中,哈密顿系统是一种优雅而紧凑的形式主义,该动力学由一个标量功能,哈密顿量完全决定。解决方案轨迹通常受到约束,以在线性矢量空间的子序列上进化。在这项工作中,我们提出了新的方法,以准确地逼近其解决方案的示例数据信息的约束机械系统的哈密顿功能。我们通过使用明确的谎言组集成商和其他经典方案来关注学习策略中约束的重要性。
translated by 谷歌翻译