Fusing camera with LiDAR is a promising technique to improve the accuracy of 3D detection due to the complementary physical properties. While most existing methods focus on fusing camera features directly with raw LiDAR point clouds or shallow 3D features, it is observed that direct deep 3D feature fusion achieves inferior accuracy due to feature misalignment. The misalignment that originates from the feature aggregation across large receptive fields becomes increasingly severe for deep network stages. In this paper, we propose PathFusion to enable path-consistent LiDAR-camera deep feature fusion. PathFusion introduces a path consistency loss between shallow and deep features, which encourages the 2D backbone and its fusion path to transform 2D features in a way that is semantically aligned with the transform of the 3D backbone. We apply PathFusion to the prior-art fusion baseline, Focals Conv, and observe more than 1.2\% mAP improvements on the nuScenes test split consistently with and without testing-time augmentations. Moreover, PathFusion also improves KITTI AP3D (R11) by more than 0.6% on moderate level.
translated by 谷歌翻译
许多基于LIDAR的用于检测大物体,单级对象检测或在简单情况下的方法的方法仍然很好。然而,由于未能利用图像语义,他们检测小物体或在困难情况下的性能并没有超越基于融合的那些的表现。为了提升复杂环境中的检测性能,本文提出了一种深度学习(DL)-embedded的多级3D对象检测网络,其承认LIDAR和相机传感器数据流,名为Voxel-Pixel Fusion网络( vpfnet)。在该网络内部,关键新颖组件称为体素 - 像素融合(VPF)层,其利用了体素 - 像素对的几何关系,并用适当的机制熔化体素特征和像素特征。此外,特别设计了几个参数以在考虑体素 - 像素对的特性之后引导和增强融合效果。最后,在多级难度下对多级3D对象检测任务的基准基准进行评估所提出的方法,并显示以平均平均精度(MAP)的所有最先进的方法优于所有最先进的方法。它也值得注意的是,我们这里的方法在挑战步行课上排名第一。
translated by 谷歌翻译
它得到了很好的认识到,从深度感知的LIDAR点云和语义富有的立体图像中融合互补信息将有利于3D对象检测。然而,探索稀疏3D点和密集2D像素之间固有的不自然相互作用并不重要。为了简化这种困难,最近的建议通常将3D点投影到2D图像平面上以对图像数据进行采样,然后聚合点处的数据。然而,这种方法往往遭受点云和RGB图像的分辨率之间的不匹配,导致次优性能。具体地,作为多模态数据聚合位置的稀疏点导致高分辨率图像的严重信息丢失,这反过来破坏了多传感器融合的有效性。在本文中,我们呈现VPFNET - 一种新的架构,可以在“虚拟”点处巧妙地对齐和聚合点云和图像数据。特别地,它们的密度位于3D点和2D像素的密度之间,虚拟点可以很好地桥接两个传感器之间的分辨率间隙,从而保持更多信息以进行处理。此外,我们还研究了可以应用于点云和RGB图像的数据增强技术,因为数据增强对迄今为止对3D对象探测器的贡献不可忽略。我们对Kitti DataSet进行了广泛的实验,与最先进的方法相比,观察到了良好的性能。值得注意的是,我们的VPFNET在KITTI测试集上实现了83.21 \%中等3D AP和91.86 \%适度的BEV AP,自2021年5月21日起排名第一。网络设计也考虑了计算效率 - 我们可以实现FPS 15对单个NVIDIA RTX 2080TI GPU。该代码将用于复制和进一步调查。
translated by 谷歌翻译
融合激光雷达和相机信息对于在自动驾驶系统中实现准确可靠的3D对象检测至关重要。但是,由于难以结合两个截然不同的方式的多晶格几何和语义特征,因此这是具有挑战性的。最近的方法旨在通过2D摄像机图像中的提升点(称为种子)中的3D空间来探索相机功能的语义密度,并且可以将它们大致分为1)1)原始点的早期融合,旨在增强3D在早期输入阶段的点云,以及2)Bev(鸟眼视图)的后期融合,在检测头之前合并了LiDar和Camera BEV功能。尽管两者在增强联合特征的表示能力方面都具有优点,但这种单级融合策略是对上述挑战的次优点。他们的主要缺点是无法充分从两种不同的方式中相互作用的多晶格语义特征。为此,我们提出了一个新颖的框架,该框架着重于多粒性激光雷达和相机功能的多尺度渐进互动。我们提出的方法缩写为MDMSFusion,实现最先进的方法可导致3D对象检测,在Nuscenes验证集上具有69.1 MAP和71.8 NDS,在NUSCENES测试集上进行了70.8 MAP和73.2 nds,该级别的第一和第二级和第二个NDS。在提交时,在单模型的非集结方法中。
translated by 谷歌翻译
在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中的周围场景是直观和融合友好的。对于BEV中的代表对象,对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以合并来自不同来源和视图的特征; (d)如何适应和概括算法作为传感器配置在不同情况下各不相同。在这项调查中,我们回顾了有关BEV感知的最新工作,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光雷达和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新的工作,并在https://github.com/openperceptionx/bevperception-survey-recipe上提供一包技巧的工具箱。
translated by 谷歌翻译
具有多传感器的3D对象检测对于自主驾驶和机器人技术的准确可靠感知系统至关重要。现有的3D探测器通过采用两阶段范式来显着提高准确性,这仅依靠激光点云进行3D提案的细化。尽管令人印象深刻,但点云的稀疏性,尤其是对于遥远的点,使得仅激光雷达的完善模块难以准确识别和定位对象。要解决这个问题,我们提出了一种新颖的多模式两阶段方法FusionRcnn,有效,有效地融合了感兴趣区域(ROI)的点云和摄像头图像。 FusionRcnn自适应地整合了LiDAR的稀疏几何信息和统一注意机制中相机的密集纹理信息。具体而言,它首先利用RoiPooling获得具有统一大小的图像集,并通过在ROI提取步骤中的建议中采样原始点来获取点设置;然后利用模式内的自我注意力来增强域特异性特征,此后通过精心设计的跨注意事项融合了来自两种模态的信息。FusionRCNN从根本上是插件,并支持不同的单阶段方法与不同的单阶段方法。几乎没有建筑变化。对Kitti和Waymo基准测试的广泛实验表明,我们的方法显着提高了流行探测器的性能。可取,FusionRCNN在Waymo上的FusionRCNN显着提高了强大的第二基线,而Waymo上的MAP则超过6.14%,并且优于竞争两阶段方法的表现。代码将很快在https://github.com/xxlbigbrother/fusion-rcnn上发布。
translated by 谷歌翻译
3D object detection received increasing attention in autonomous driving recently. Objects in 3D scenes are distributed with diverse orientations. Ordinary detectors do not explicitly model the variations of rotation and reflection transformations. Consequently, large networks and extensive data augmentation are required for robust detection. Recent equivariant networks explicitly model the transformation variations by applying shared networks on multiple transformed point clouds, showing great potential in object geometry modeling. However, it is difficult to apply such networks to 3D object detection in autonomous driving due to its large computation cost and slow reasoning speed. In this work, we present TED, an efficient Transformation-Equivariant 3D Detector to overcome the computation cost and speed issues. TED first applies a sparse convolution backbone to extract multi-channel transformation-equivariant voxel features; and then aligns and aggregates these equivariant features into lightweight and compact representations for high-performance 3D object detection. On the highly competitive KITTI 3D car detection leaderboard, TED ranked 1st among all submissions with competitive efficiency.
translated by 谷歌翻译
激光镜头和相机是两个用于自动驾驶中3D感知的互补传感器。激光点云具有准确的空间和几何信息,而RGB图像为上下文推理提供了纹理和颜色数据。为了共同利用激光雷达和相机,现有的融合方法倾向于基于校准,即一对一的映射,将每个3D点与一个投影图像像素对齐。但是,这些方法的性能高度依赖于校准质量,这对传感器的时间和空间同步敏感。因此,我们提出了一个动态的交叉注意(DCA)模块,具有新型的一对一的交叉模式映射,该模块从初始投影对邻域的最初投影中学习了多个偏移,从而发展了对校准误差的耐受性。此外,提出了A \ textIt {动态查询增强}来感知与模型无关的校准,从而进一步增强了DCA对初始未对准的耐受性。名为“动态跨注意网络”(DCAN)的整个融合体系结构利用了多级图像特征,并适应了点云的多个表示,这使DCA可以用作插件融合模块。对Nuscenes和Kitti的广泛实验证明了DCA的有效性。拟议的DCAN在Nuscenes检测挑战上优于最先进的方法。
translated by 谷歌翻译
LiDAR-based 3D Object detectors have achieved impressive performances in many benchmarks, however, multisensors fusion-based techniques are promising to further improve the results. PointPainting, as a recently proposed framework, can add the semantic information from the 2D image into the 3D LiDAR point by the painting operation to boost the detection performance. However, due to the limited resolution of 2D feature maps, severe boundary-blurring effect happens during re-projection of 2D semantic segmentation into the 3D point clouds. To well handle this limitation, a general multimodal fusion framework MSF has been proposed to fuse the semantic information from both the 2D image and 3D points scene parsing results. Specifically, MSF includes three main modules. First, SOTA off-the-shelf 2D/3D semantic segmentation approaches are employed to generate the parsing results for 2D images and 3D point clouds. The 2D semantic information is further re-projected into the 3D point clouds with calibrated parameters. To handle the misalignment between the 2D and 3D parsing results, an AAF module is proposed to fuse them by learning an adaptive fusion score. Then the point cloud with the fused semantic label is sent to the following 3D object detectors. Furthermore, we propose a DFF module to aggregate deep features in different levels to boost the final detection performance. The effectiveness of the framework has been verified on two public large-scale 3D object detection benchmarks by comparing with different baselines. The experimental results show that the proposed fusion strategies can significantly improve the detection performance compared to the methods using only point clouds and the methods using only 2D semantic information. Most importantly, the proposed approach significantly outperforms other approaches and sets new SOTA results on the nuScenes testing benchmark.
translated by 谷歌翻译
由于经过验证的2D检测技术的适用性,大多数当前点云检测器都广泛采用了鸟类视图(BEV)。但是,现有方法通过简单地沿高度尺寸折叠的体素或点特征来获得BEV特征,从而导致3D空间信息的重丢失。为了减轻信息丢失,我们提出了一个基于多级特征降低降低策略的新颖点云检测网络,称为MDRNET。在MDRNET中,空间感知的维度降低(SDR)旨在在体素至BEV特征转换过程中动态关注对象的宝贵部分。此外,提出了多级空间残差(MSR),以融合BEV特征图中的多级空间信息。关于Nuscenes的广泛实验表明,该提出的方法的表现优于最新方法。该代码将在出版时提供。
translated by 谷歌翻译
从点云的3D检测中有两条流:单级方法和两级方法。虽然前者更加计算高效,但后者通常提供更好的检测精度。通过仔细检查两级方法,我们发现如果设计,第一阶段可以产生准确的盒子回归。在这种情况下,第二阶段主要重新分配盒子,使得具有更好的本地化的盒子得到选择。从这个观察开始,我们设计了一个可以满足这些要求的单级锚定网络。该网络名为AFDETV2,通过在骨干网中包含一个自校准的卷积块,键盘辅助监控和多任务头中的IOU预测分支来扩展了先前的工作。结果,检测精度在单阶段中大大提升。为了评估我们的方法,我们在Waymo Open DataSet和Nuscenes DataSet上进行了广泛的实验。我们观察到我们的AFDETv2在这两个数据集上实现了最先进的结果,优于所有现有技术,包括单级和两级SE3D探测器。 AFDETv2在Waymo Open DataSet挑战的实时3D检测中获得了第1位的第1位,我们的模型AFDetv2基地的变体题为挑战赞助商的“最有效的模型”,呈现出卓越的计算效率。为了证明这种单级方法的一般性,我们还将其应用于两级网络的第一阶段。毫无例外,结果表明,利用加强的骨干和救护方法,不再需要第二阶段细化。
translated by 谷歌翻译
利用多模式融合,尤其是在摄像头和激光雷达之间,对于为自动驾驶汽车构建准确且健壮的3D对象检测系统已经至关重要。直到最近,点装饰方法(在该点云中都用相机功能增强,一直是该领域的主要方法。但是,这些方法无法利用来自相机的较高分辨率图像。还提出了最近将摄像头功能投射到鸟类视图(BEV)融合空间的作品,但是它们需要预计数百万像素,其中大多数仅包含背景信息。在这项工作中,我们提出了一种新颖的方法中心功能融合(CFF),其中我们利用相机和激光雷达中心的基于中心的检测网络来识别相关对象位置。然后,我们使用基于中心的检测来识别与对象位置相关的像素功能的位置,这是图像中总数的一小部分。然后将它们投射并融合在BEV框架中。在Nuscenes数据集上,我们的表现优于仅限激光雷达基线的4.9%地图,同时比其他融合方法融合了100倍。
translated by 谷歌翻译
Fusing the camera and LiDAR information has become a de-facto standard for 3D object detection tasks. Current methods rely on point clouds from the LiDAR sensor as queries to leverage the feature from the image space. However, people discovered that this underlying assumption makes the current fusion framework infeasible to produce any prediction when there is a LiDAR malfunction, regardless of minor or major. This fundamentally limits the deployment capability to realistic autonomous driving scenarios. In contrast, we propose a surprisingly simple yet novel fusion framework, dubbed BEVFusion, whose camera stream does not depend on the input of LiDAR data, thus addressing the downside of previous methods. We empirically show that our framework surpasses the state-of-the-art methods under the normal training settings. Under the robustness training settings that simulate various LiDAR malfunctions, our framework significantly surpasses the state-of-the-art methods by 15.7% to 28.9% mAP. To the best of our knowledge, we are the first to handle realistic LiDAR malfunction and can be deployed to realistic scenarios without any post-processing procedure. The code is available at https://github.com/ADLab-AutoDrive/BEVFusion.
translated by 谷歌翻译
基于LIDAR的传感驱动器电流自主车辆。尽管进展迅速,但目前的激光雷达传感器在分辨率和成本方面仍然落后于传统彩色相机背后的二十年。对于自主驾驶,这意味着靠近传感器的大物体很容易可见,但远方或小物体仅包括一个测量或两个。这是一个问题,尤其是当这些对象结果驾驶危险时。另一方面,在车载RGB传感器中清晰可见这些相同的对象。在这项工作中,我们提出了一种将RGB传感器无缝熔化成基于LIDAR的3D识别方法。我们的方法采用一组2D检测来生成密集的3D虚拟点,以增加否则稀疏的3D点云。这些虚拟点自然地集成到任何基于标准的LIDAR的3D探测器以及常规激光雷达测量。由此产生的多模态检测器简单且有效。大规模NUSCENES数据集的实验结果表明,我们的框架通过显着的6.6地图改善了强大的中心点基线,并且优于竞争融合方法。代码和更多可视化可在https://tianweiy.github.io/mvp/上获得
translated by 谷歌翻译
最近,融合了激光雷达点云和相机图像,提高了3D对象检测的性能和稳健性,因为这两种方式自然具有强烈的互补性。在本文中,我们通过引入新型级联双向融合〜(CB融合)模块和多模态一致性〜(MC)损耗来提出用于多模态3D对象检测的EPNet ++。更具体地说,所提出的CB融合模块提高点特征的丰富语义信息,以级联双向交互融合方式具有图像特征,导致更全面且辨别的特征表示。 MC损失明确保证预测分数之间的一致性,以获得更全面且可靠的置信度分数。基蒂,JRDB和Sun-RGBD数据集的实验结果展示了通过最先进的方法的EPNet ++的优越性。此外,我们强调一个关键但很容易被忽视的问题,这是探讨稀疏场景中的3D探测器的性能和鲁棒性。广泛的实验存在,EPNet ++优于现有的SOTA方法,在高稀疏点云壳中具有显着的边距,这可能是降低LIDAR传感器的昂贵成本的可用方向。代码将来会发布。
translated by 谷歌翻译
虽然基于点的网络被证明是3D点云建模的准确性,但它们仍然落在3D检测中基于体素的竞争对手后面。我们观察到,用于下采样点的主要集合抽象设计可以保持太多的不重要背景信息,可以影响检测对象的特征学习。为了解决这个问题,我们提出了一种名为语义增强集抽象(SASA)的新型集抽象方法。从技术上讲,我们首先将二进制分段模块添加为侧面输出,以帮助识别前景点。基于估计的点亮前景分数,我们提出了一种语义引导的点采样算法,帮助在下采样期间保持更重要的前景点。在实践中,SASA显示有效地识别与前景对象相关的有价值的点,并改善基于点的3D检测特征学习。此外,它是一种易于插入式模块,能够提升各种基于点的探测器,包括单级和两级的探测器。对流行的基蒂和NUSCENES数据集的广泛实验验证了SASA的优越性,提升基于点的检测模型,以达到最先进的基于体素的方法。
translated by 谷歌翻译
现有的最佳3D对象检测器通常依赖于多模式融合策略。但是,由于忽略了特定于模式的有用信息,因此从根本上限制了该设计,并最终阻碍了模型性能。为了解决这一局限性,在这项工作中,我们介绍了一种新型的模式相互作用策略,在该策略中,在整个过程中学习和维护单个单模式表示,以使其在物体检测过程中被利用其独特特征。为了实现这一建议的策略,我们设计了一个深层互动体系结构,其特征是多模式代表性交互编码器和多模式预测交互解码器。大规模Nuscenes数据集的实验表明,我们所提出的方法经常超过所有先前的艺术。至关重要的是,我们的方法在竞争激烈的Nuscenes对象检测排行榜上排名第一。
translated by 谷歌翻译
来自LIDAR或相机传感器的3D对象检测任务对于自动驾驶至关重要。先锋尝试多模式融合的尝试补充了稀疏的激光雷达点云,其中包括图像的丰富语义纹理信息,以额外的网络设计和开销为代价。在这项工作中,我们提出了一个名为SPNET的新型语义传递框架,以通过丰富的上下文绘画的指导来提高现有基于激光雷达的3D检测模型的性能,在推理过程中没有额外的计算成本。我们的关键设计是首先通过训练语义绘制的教师模型来利用地面真实标签中潜在的指导性语义知识,然后引导纯LIDAR网络通过不同的粒度传播模块来学习语义绘制的表示:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类:类别:类别:类别:类别:类别:类别:类别: - 通过,像素的传递和实例传递。实验结果表明,所提出的SPNET可以与大多数现有的3D检测框架无缝合作,其中AP增益为1〜5%,甚至在KITTI测试基准上实现了新的最新3D检测性能。代码可在以下网址获得:https://github.com/jb892/sp​​net。
translated by 谷歌翻译
激光器传感器的进步提供了支持3D场景了解的丰富的3D数据。然而,由于遮挡和信号未命中,LIDAR点云实际上是2.5D,因为它们仅覆盖部分底层形状,这对3D感知构成了根本挑战。为了解决挑战,我们提出了一种基于新的LIDAR的3D对象检测模型,被称为窗帘检测器(BTCDET)后面,该模型学习物体形状前沿并估计在点云中部分封闭(窗帘)的完整物体形状。 BTCDET首先识别受遮挡和信号未命中的影响的区域。在这些区域中,我们的模型预测了占用的概率,指示区域是否包含对象形状。与此概率图集成,BTCDET可以产生高质量的3D提案。最后,占用概率也集成到提案细化模块中以生成最终边界框。关于基蒂数据集的广泛实验和Waymo Open DataSet展示了BTCDET的有效性。特别是,对于Kitti基准测试的汽车和骑自行车者的3D检测,BTCDET通过显着的边缘超越所有公布的最先进的方法。代码已发布(https://github.com/xharlie/btcdet}(https://github.com/xharlie/btcdet)。
translated by 谷歌翻译
从预期的观点(例如范围视图(RV)和Bird's-eye-view(BEV))进行了云云语义细分。不同的视图捕获了点云的不同信息,因此彼此互补。但是,最近基于投影的点云语义分割方法通常会利用一种香草后期的融合策略来预测不同观点,因此未能从表示学习过程中从几何学角度探索互补信息。在本文中,我们引入了一个几何流动网络(GFNET),以探索以融合方式对准不同视图之间的几何对应关系。具体而言,我们设计了一个新颖的几何流量模块(GFM),以双向对齐并根据端到端学习方案下的几何关系跨不同观点传播互补信息。我们对两个广泛使用的基准数据集(Semantickitti和Nuscenes)进行了广泛的实验,以证明我们的GFNET对基于项目的点云语义分割的有效性。具体而言,GFNET不仅显着提高了每个单独观点的性能,而且还可以在所有基于投影的模型中取得最新的结果。代码可在\ url {https://github.com/haibo-qiu/gfnet}中获得。
translated by 谷歌翻译