多变量功能数据的协方差结构可以高度复杂,特别是如果多变量维度大,则使标准多变量数据的统计方法的扩展到功能数据设置具有挑战性。例如,通过将多变量方法应用于截断的基础扩展系数,最近已经扩展到高斯图形模型。然而,与多变量数据相比的关键难度是协方差操作员紧凑,因此不可逆转。本文中的方法论地解决了多元函数数据的协方差建模的一般问题,特别是特定功能性高斯图形模型。作为第一步,提出了多变量功能数据的协方差运算符的可分离性的新概念,称为部分可分离性,导致这种数据的新型Karhunen-Lo \“Eve型扩展。接下来,示出部分可分离结构是特别有用的,以提供可以用一系列有限维图形模型,每个相同的固定尺寸识别的明确定义的功能高斯图形模型。这通过应用联合图形套索来激发一个简单有效的估计过程。通过在电机任务期间的模拟和分析功能性脑连接的仿真和分析来评估图形模型估计方法的经验性能。通过在电机任务期间的仿真和分析来评估图形模型估计方法的百分比实证性能。
translated by 谷歌翻译
我们考虑使用共享结构估算两个功能无向图形模型之间的差异的问题。在许多应用中,数据自然被认为是随机函数的向量而不是标量的矢量。例如,脑电图(EEG)数据更适当地被视为时间函数。在这样的问题中,不仅可以每个样本测量的函数数量大,而且每个功能都是自身是无限尺寸对象,使估计模型参数具有挑战性。这进一步复杂于曲线通常仅在离散时间点观察到。我们首先定义一个功能差异图,捕获两个功能图形模型之间的差异,并在功能性差分图定义良好时正式表征。然后,我们提出了一种方法,软件,直接估计功能差异图,而不首先估计每个图形。这在各个图形是密集的情况下,这是特别有益的,但差分图是稀疏的。我们表明,融合始终估计功能差图,即使在全面观察和离散的功能路径的高维设置中也是如此。我们通过仿真研究说明了我们方法的有限样本性质。我们还提出了一种竞争方法,该方法是关节功能图形套索,它概括了关节图形套索到功能设置。最后,我们将我们的方法应用于EEG数据,以揭示一群含有酒精使用障碍和对照组的个体之间的功能性脑连接的差异。
translated by 谷歌翻译
本文研究了无限二维希尔伯特空间之间线性算子的学习。训练数据包括希尔伯特空间中的一对随机输入向量以及在未知的自我接合线性运算符下的嘈杂图像。假设操作员在已知的基础上是对角线化的,则该工作解决了给定数据估算操作员特征值的等效反问题。采用贝叶斯方法,理论分析在无限的数据限制中建立了后部收缩率,而高斯先验者与反向问题的正向图没有直接相关。主要结果还包括学习理论的概括错误保证了广泛的分配变化。这些收敛速率分别量化了数据平滑度和真实特征值衰减或生长的影响,分别是紧凑或无界操作员对样品复杂性的影响。数值证据支持对角线和非对角性环境中的理论。
translated by 谷歌翻译
现代生物医学研究通常收集多视图数据,即在同一组对象上测量的多种类型的数据。高维多视图数据分析中的流行模型是将每个视图的数据矩阵分解为跨所有数据视图常见的潜在因子生成的低级常见源矩阵,对应于每个视图的低级别源矩阵和添加剂噪声矩阵。我们提出了一种用于该模型的新型分解方法,称为基于分解的广义规范相关分析(D-GCCA)。与大多数现有方法使用的欧几里德点产品空间相比,D-GCCA严格地定义了随机变量的L2空间的分解,从而能够为低秩矩阵恢复提供估计一致性。此外,为了良好校准共同的潜在因子,我们对独特的潜在因子施加了理想的正交性限制。然而,现有方法不充分考虑这种正交性,因此可能遭受未检测到的共同源变异的大量损失。我们的D-GCCA通过分离规范变量中的共同和独特的组分,同时从主成分分析的角度享受吸引人的解释,进一步逐步进行一步。此外,我们建议使用常见的或独特潜在因子解释的信号方差的可变级别比例,以选择最受影响的变量。我们的D-GCCA方法的一致估计是通过良好的有限样本数性能建立的,并且具有封闭式表达式,导致有效计算,特别是对于大规模数据。 D-GCCA在最先进的方法上的优越性也在模拟和现实世界数据示例中得到证实。
translated by 谷歌翻译
作为估计高维网络的工具,图形模型通常应用于钙成像数据以估计功能性神经元连接,即神经元活动之间的关系。但是,在许多钙成像数据集中,没有同时记录整个神经元的人群,而是部分重叠的块。如(Vinci等人2019年)最初引入的,这导致了图形缝问题,在该问题中,目的是在仅观察到功能的子集时推断完整图的结构。在本文中,我们研究了一种新颖的两步方法来绘制缝的方法,该方法首先使用低级协方差完成技术在估计图结构之前使用低级协方差完成技术划分完整的协方差矩阵。我们介绍了三种解决此问题的方法:阻止奇异价值分解,核标准惩罚和非凸低级别分解。尽管先前的工作已经研究了低级别矩阵的完成,但我们解决了阻碍遗失的挑战,并且是第一个在图形学习背景下研究问题的挑战。我们讨论了两步过程的理论特性,通过证明新颖的l无限 - 基 - 误差界的矩阵完成,以块错失性证明了一种提出的方​​法的图选择一致性。然后,我们研究了所提出的方法在模拟和现实世界数据示例上的经验性能,通过该方法,我们显示了这些方法从钙成像数据中估算功能连通性的功效。
translated by 谷歌翻译
基于添加条件独立性,我们为离散节点变量引入非参数图形模型。添加剂条件独立性是一种三种方式统计关系,其通过满足半石灰阳极公理来利用有条件独立性与有条件的独立性共享类似的性质。基于该关系,我们构建了一种用于离散变量的加性图形模型,其不受诸如诸如Ising模型的参数模型的限制。我们通过惩罚添加精度运算符的离散版本的惩罚估算来开发新的图形模型的估计,并在超高维设置下建立估计器的一致性。随着这些方法的发展,我们还利用离散随机变量的性质来揭示添加剂条件独立性与条件独立性之间的更深层次关系。新的图形模型在某些稀疏条件下减少了条件独立性图形模型。我们进行仿真实验和对HIV抗逆转录病毒治疗数据集的分析,以比较现有的新方法。
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
许多现代数据集,从神经影像和地统计数据等领域都以张量数据的随机样本的形式来说,这可以被理解为对光滑的多维随机功能的嘈杂观察。来自功能数据分析的大多数传统技术被维度的诅咒困扰,并且随着域的尺寸增加而迅速变得棘手。在本文中,我们提出了一种学习从多维功能数据样本的持续陈述的框架,这些功能是免受诅咒的几种表现形式的。这些表示由一组可分离的基函数构造,该函数被定义为最佳地适应数据。我们表明,通过仔细定义的数据的仔细定义的减少转换的张测仪分解可以有效地解决所得到的估计问题。使用基于差分运算符的惩罚,并入粗糙的正则化。也建立了相关的理论性质。在模拟研究中证明了我们对竞争方法的方法的优点。我们在神经影像动物中得出真正的数据应用。
translated by 谷歌翻译
协方差估计在功能数据分析中普遍存在。然而,对多维域的功能观测的情况引入了计算和统计挑战,使标准方法有效地不适用。为了解决这个问题,我们将“协方差网络”(CoVNet)介绍为建模和估算工具。 Covnet模型是“Universal” - 它可用于近似于达到所需精度的任何协方差。此外,该模型可以有效地拟合到数据,其神经网络架构允许我们在实现中采用现代计算工具。 Covnet模型还承认了一个封闭形式的实体分解,可以有效地计算,而不构建协方差本身。这有助于在CoVnet的背景下轻松存储和随后操纵协方差。我们建立了拟议估计者的一致性,得出了汇合速度。通过广泛的仿真研究和休息状态FMRI数据的应用,证明了所提出的方法的有用性。
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译
众所周知,许多网络系统,例如电网,大脑和舆论动态社交网络,都可以遵守保护法。这种现象的例子包括电网中的基尔乔夫法律和社交网络中的意见共识。网络系统中的保护定律可以建模为$ x = b^{*} y $的平衡方程,其中$ b^{*} $的稀疏模式捕获了网络的连接,$ y,x \在\ mathbb {r}^p $中分别是节点上“电势”和“注入流”的向量。节点电位$ y $会导致跨边缘的流量,并且在节点上注入的流量$ x $是网络动力学的无关紧要的。在几个实用的系统中,网络结构通常是未知的,需要从数据估算。为此,可以访问节点电位$ y $的样本,但只有节点注射$ x $的统计信息。在这个重要问题的激励下,我们研究了$ n $ y $ y $ y $ y $ y $ y $ y $ y $ b^{*} $稀疏结构的估计,假设节点注射$ x $遵循高斯分布,并带有已知的发行协方差$ \ sigma_x $。我们建议在高维度中为此问题的新$ \ ell_ {1} $ - 正则最大似然估计器,网络的大小$ p $大于样本量$ n $。我们表明,此优化问题是目标中的凸,并接受了独特的解决方案。在新的相互不一致的条件下,我们在三重$(n,p,d)$上建立了足够的条件,对于$ b^{*} $的精确稀疏恢复是可能的; $ d $是图的程度。我们还建立了在元素最大,Frobenius和运营商规范中回收$ b^{*} $的保证。最后,我们通过对拟议估计量对合成和现实世界数据的性能进行实验验证来补充这些理论结果。
translated by 谷歌翻译
We consider the problem of estimating a multivariate function $f_0$ of bounded variation (BV), from noisy observations $y_i = f_0(x_i) + z_i$ made at random design points $x_i \in \mathbb{R}^d$, $i=1,\ldots,n$. We study an estimator that forms the Voronoi diagram of the design points, and then solves an optimization problem that regularizes according to a certain discrete notion of total variation (TV): the sum of weighted absolute differences of parameters $\theta_i,\theta_j$ (which estimate the function values $f_0(x_i),f_0(x_j)$) at all neighboring cells $i,j$ in the Voronoi diagram. This is seen to be equivalent to a variational optimization problem that regularizes according to the usual continuum (measure-theoretic) notion of TV, once we restrict the domain to functions that are piecewise constant over the Voronoi diagram. The regression estimator under consideration hence performs (shrunken) local averaging over adaptively formed unions of Voronoi cells, and we refer to it as the Voronoigram, following the ideas in Koenker (2005), and drawing inspiration from Tukey's regressogram (Tukey, 1961). Our contributions in this paper span both the conceptual and theoretical frontiers: we discuss some of the unique properties of the Voronoigram in comparison to TV-regularized estimators that use other graph-based discretizations; we derive the asymptotic limit of the Voronoi TV functional; and we prove that the Voronoigram is minimax rate optimal (up to log factors) for estimating BV functions that are essentially bounded.
translated by 谷歌翻译
我们考虑发现$ k $相关的高斯定向的非循环图(DAG)的问题,其中涉及的图形结构共享一致的因果秩序和支持的支持。在多任务学习设置下,我们提出了$ L_1 / L_2 $ -Regularized最大似然估计器(MLE),用于学习$ K $线性结构方程模型。理论上我们表明,通过利用相关任务利用数据来实现联合估算器可以实现比单独的估计更好的采样复杂性来恢复因果秩序(或拓扑阶)。此外,联合估计器能够通过与一些可识别的DAG一起估计它们来恢复不可识别的DAG。最后,我们的分析还显示了联盟支持恢复的协会的一致性。为了允许实际实现,我们设计了一种连续的优化问题,其优化器与联合估计器相同,并且可以通过迭代算法有效地近似。我们验证了实验中联合估计器的理论分析和有效性。
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译
Network data are ubiquitous in modern machine learning, with tasks of interest including node classification, node clustering and link prediction. A frequent approach begins by learning an Euclidean embedding of the network, to which algorithms developed for vector-valued data are applied. For large networks, embeddings are learned using stochastic gradient methods where the sub-sampling scheme can be freely chosen. Despite the strong empirical performance of such methods, they are not well understood theoretically. Our work encapsulates representation methods using a subsampling approach, such as node2vec, into a single unifying framework. We prove, under the assumption that the graph is exchangeable, that the distribution of the learned embedding vectors asymptotically decouples. Moreover, we characterize the asymptotic distribution and provided rates of convergence, in terms of the latent parameters, which includes the choice of loss function and the embedding dimension. This provides a theoretical foundation to understand what the embedding vectors represent and how well these methods perform on downstream tasks. Notably, we observe that typically used loss functions may lead to shortcomings, such as a lack of Fisher consistency.
translated by 谷歌翻译
我们讨论了具有未知IV有效性的线性仪器变量(IV)模型中识别的基本问题。我们重新审视了流行的多数和多元化规则,并表明通常没有识别条件是“且仅在总体上”。假设“最稀少的规则”,该规则等同于多数规则,但在计算算法中变得运作,我们研究并证明了基于两步选择的其他IV估计器的非convex惩罚方法的优势,就两步选择而言选择一致性和单独弱IV的适应性。此外,我们提出了一种与识别条件保持一致的替代较低的惩罚,并同时提供甲骨文稀疏结构。与先前的文献相比,针对静脉强度较弱的估计仪得出了理想的理论特性。使用模拟证明了有限样本特性,并且选择和估计方法应用于有关贸易对经济增长的影响的经验研究。
translated by 谷歌翻译
随机奇异值分解(RSVD)是用于计算大型数据矩阵截断的SVD的一类计算算法。给定A $ n \ times n $对称矩阵$ \ mathbf {m} $,原型RSVD算法输出通过计算$ \ mathbf {m mathbf {m} $的$ k $引导singular vectors的近似m}^{g} \ mathbf {g} $;这里$ g \ geq 1 $是一个整数,$ \ mathbf {g} \ in \ mathbb {r}^{n \ times k} $是一个随机的高斯素描矩阵。在本文中,我们研究了一般的“信号加上噪声”框架下的RSVD的统计特性,即,观察到的矩阵$ \ hat {\ mathbf {m}} $被认为是某种真实但未知的加法扰动信号矩阵$ \ mathbf {m} $。我们首先得出$ \ ell_2 $(频谱规范)和$ \ ell_ {2 \ to \ infty} $(最大行行列$ \ ell_2 $ norm)$ \ hat {\ hat {\ Mathbf {M}} $和信号矩阵$ \ Mathbf {M} $的真实单数向量。这些上限取决于信噪比(SNR)和功率迭代$ g $的数量。观察到一个相变现象,其中较小的SNR需要较大的$ g $值以保证$ \ ell_2 $和$ \ ell_ {2 \ to \ fo \ infty} $ distances的收敛。我们还表明,每当噪声矩阵满足一定的痕量生长条件时,这些相变发生的$ g $的阈值都会很清晰。最后,我们得出了近似奇异向量的行波和近似矩阵的进入波动的正常近似。我们通过将RSVD的几乎最佳性能保证在应用于三个统计推断问题的情况下,即社区检测,矩阵完成和主要的组件分析,并使用缺失的数据来说明我们的理论结果。
translated by 谷歌翻译
在许多情况下,例如全基因组关联研究,通常存在变量之间的依赖性,通常可以推断模型中的相互作用效应。但是,在复杂和高维数据中数百万变量之间的成对相互作用受到低统计功率和巨大的计算成本的影响。为了应对这些挑战,我们提出了一个具有错误发现率(FDR)控制的两阶段测试程序,该程序被称为不太保守的多次测试校正。从理论上讲,FDR控制会费在两个阶段的数据依赖性方面的难度以及第二阶段进行的假设检验的数量取决于第一阶段的筛选结果。通过使用CRAM \'ER类型中度偏差技术,我们表明我们的过程在普遍的线性模型(GLM)中渐近地控制FDR,其中允许模型被误认为。另外,严格确定了FDR控制程序的渐近力。我们通过全面的仿真研究证明,我们的两阶段程序在计算上比经典BH程序具有可比或改进的统计能力更有效。最后,我们将提出的方法应用于DBGAP的膀胱癌数据,科学目标是鉴定膀胱癌的遗传易感性基因座。
translated by 谷歌翻译
在本文中,我们考虑了使用$ \ ell_1 $ regularized logistic回归的方法来估算与高维iSing模型相关的图形的元学习问题,用于每个节点的邻域选择。我们的目标是在学习新任务中使用从辅助任务中学到的信息来降低其足够的样本复杂性。为此,我们提出了一种新颖的生成模型以及不当的估计方法。在我们的设置中,所有任务均为\ emph {相似}在其\ emph {Random}模型参数和支持中。通过将所有样品从辅助任务汇总到\ emph {不正确}估计一个参数向量,我们可以恢复假定的尺寸很小的真实支持联合,具有很高的概率,具有足够的样品复杂性为$ \ omega(1) $每任务,对于$ k = \ omega(d^3 \ log P)$具有$ p $节点和最大邻域大小$ d $的ISING型号的任务。然后,在对新任务的支持仅限于估计的支持联盟的支持下,我们证明,可以通过降低$ \ omega(d^3 \ log d)$的足够样品复杂性来获得新任务的一致邻居选择。
translated by 谷歌翻译
We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M . Can we complete the matrix and recover the entries that we have not seen?We show that one can perfectly recover most low-rank matrices from what appears to be an incomplete set of entries. We prove that if the number m of sampled entries obeys m ≥ C n 1.2 r log n for some positive numerical constant C, then with very high probability, most n × n matrices of rank r can be perfectly recovered by solving a simple convex optimization program. This program finds the matrix with minimum nuclear norm that fits the data. The condition above assumes that the rank is not too large. However, if one replaces the 1.2 exponent with 1.25, then the result holds for all values of the rank. Similar results hold for arbitrary rectangular matrices as well. Our results are connected with the recent literature on compressed sensing, and show that objects other than signals and images can be perfectly reconstructed from very limited information.
translated by 谷歌翻译