强化学习(RL)是一种基于代理的方法,可以教机器人在物理世界中导航。已知收集RL的数据是一项费力的任务,现实世界实验可能会冒险。模拟器以更快,更具成本效益的方式促进培训数据的收集。但是,RL经常需要大量的仿真步骤才能使代理在简单任务上变得熟练。这是基于RL的视觉四面导航字段中普遍的问题,其中状态尺寸通常非常大,动态模型很复杂。此外,渲染图像和获得代理的物理特性在计算上可能很昂贵。为了解决这个问题,我们提出了一个基于Airsim的模拟框架,该框架提供了有效的并行训练。在此框架的基础上,APE-X经过修改,以结合空调环境的分散培训,以利用众多网络计算机。通过实验,我们能够使用上述框架将训练时间从3.9小时减少到11分钟,总共有74个代理和两台网络计算机。可以在https://sites.google.com/view/prl4airsim/home上找到有关我们项目Prl4airsim的更多详细信息和有关我们项目的视频。
translated by 谷歌翻译
在自主驾驶场中,人类知识融合到深增强学习(DRL)通常基于在模拟环境中记录的人类示范。这限制了在现实世界交通中的概率和可行性。我们提出了一种两级DRL方法,从真实的人类驾驶中学习,实现优于纯DRL代理的性能。培训DRL代理商是在Carla的框架内完成了机器人操作系统(ROS)。对于评估,我们设计了不同的真实驾驶场景,可以将提出的两级DRL代理与纯DRL代理进行比较。在从人驾驶员中提取“良好”行为之后,例如在信号交叉口中的预期,该代理变得更有效,并且驱动更安全,这使得这种自主代理更适应人体机器人交互(HRI)流量。
translated by 谷歌翻译
在包装交付,交通监控,搜索和救援操作以及军事战斗订婚等不同应用中,对使用无人驾驶汽车(UAV)(无人机)的需求越来越不断增加。在所有这些应用程序中,无人机用于自动导航环境 - 没有人类互动,执行特定任务并避免障碍。自主无人机导航通常是使用强化学习(RL)来完成的,在该学习中,代理在域中充当专家在避免障碍的同时导航环境。了解导航环境和算法限制在选择适当的RL算法以有效解决导航问题方面起着至关重要的作用。因此,本研究首先确定了无人机导航任务,并讨论导航框架和仿真软件。接下来,根据环境,算法特征,能力和不同无人机导航问题的应用程序对RL算法进行分类和讨论,这将帮助从业人员和研究人员为其无人机导航使用情况选择适当的RL算法。此外,确定的差距和机会将推动无人机导航研究。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
Development of navigation algorithms is essential for the successful deployment of robots in rapidly changing hazardous environments for which prior knowledge of configuration is often limited or unavailable. Use of traditional path-planning algorithms, which are based on localization and require detailed obstacle maps with goal locations, is not possible. In this regard, vision-based algorithms hold great promise, as visual information can be readily acquired by a robot's onboard sensors and provides a much richer source of information from which deep neural networks can extract complex patterns. Deep reinforcement learning has been used to achieve vision-based robot navigation. However, the efficacy of these algorithms in environments with dynamic obstacles and high variation in the configuration space has not been thoroughly investigated. In this paper, we employ a deep Dyna-Q learning algorithm for room evacuation and obstacle avoidance in partially observable environments based on low-resolution raw image data from an onboard camera. We explore the performance of a robotic agent in environments containing no obstacles, convex obstacles, and concave obstacles, both static and dynamic. Obstacles and the exit are initialized in random positions at the start of each episode of reinforcement learning. Overall, we show that our algorithm and training approach can generalize learning for collision-free evacuation of environments with complex obstacle configurations. It is evident that the agent can navigate to a goal location while avoiding multiple static and dynamic obstacles, and can escape from a concave obstacle while searching for and navigating to the exit.
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
强化学习(RL)通过原始像素成像和连续的控制任务在视频游戏中表现出了令人印象深刻的表现。但是,RL的性能较差,例如原始像素图像,例如原始像素图像。人们普遍认为,基于物理状态的RL策略(例如激光传感器测量值)比像素学习相比会产生更有效的样品结果。这项工作提出了一种新方法,该方法从深度地图估算中提取信息,以教授RL代理以执行无人机导航(UAV)的无地图导航。我们提出了深度模仿的对比度无监督的优先表示(DEPTH-CUPRL),该表示具有优先重播记忆的估算图像的深度。我们使用RL和对比度学习的组合,根据图像的RL问题引发。从无人驾驶汽车(UAV)对结果的分析中,可以得出结论,我们的深度cuprl方法在无MAP导航能力中对决策和优于最先进的像素的方法有效。
translated by 谷歌翻译
深度强化学习(DRL)的最新进步通过允许自动控制器设计促进了机器人技术。自动控制器设计是设计群体机器人系统的关键方法,与单个机器人系统相比,它需要更复杂的控制器来领导所需的集体行为。尽管基于DRL的控制器设计方法显示出其有效性,但对中央培训服务器的依赖是在机器人服务器通信不稳定或有限的现实环境中的关键问题。我们提出了一种新型联邦学习(FL)的DRL培训策略(FLDDPG),以用于群体机器人应用。通过在有限的通信带宽方案下与基线策略进行比较,可以证明,FLDDPG方法导致更高的鲁棒性和泛化能力进入不同的环境和真正的机器人,而基线策略则遭受了通信带宽的限制。该结果表明,所提出的方法可以使在通信带宽有限的环境中运行的群体机器人系统受益,例如在高辐射,水下或地下环境中。
translated by 谷歌翻译
We propose a conceptually simple and lightweight framework for deep reinforcement learning that uses asynchronous gradient descent for optimization of deep neural network controllers. We present asynchronous variants of four standard reinforcement learning algorithms and show that parallel actor-learners have a stabilizing effect on training allowing all four methods to successfully train neural network controllers. The best performing method, an asynchronous variant of actor-critic, surpasses the current state-of-the-art on the Atari domain while training for half the time on a single multi-core CPU instead of a GPU. Furthermore, we show that asynchronous actor-critic succeeds on a wide variety of continuous motor control problems as well as on a new task of navigating random 3D mazes using a visual input.
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
在这项工作中,我们介绍并研究了一种培训设置,该培训设置通过在单个工作站GPU上使用大量并行性来实现现实世界机器人任务的快速政策。我们分析和讨论不同培训算法组件在大规模平行制度中对最终政策绩效和培训时间的影响。此外,我们还提供了一种新颖的游戏启发课程,非常适合与数千个模拟机器人并行培训。我们通过训练四足机器人Anymal在具有挑战性的地形上行走来评估该方法。平行方法允许在不到四分钟的时间内对平坦地形进行培训政策,而在二十分钟内,地形不平衡。与以前的工作相比,这代表了多个数量级的加速。最后,我们将政策转移到真实的机器人中以验证该方法。我们开放培训代码,以帮助加速学习的腿部运动领域的进一步研究。
translated by 谷歌翻译
使用强化学习解决复杂的问题必须将问题分解为可管理的任务,无论是明确或隐式的任务,并学习解决这些任务的政策。反过来,这些政策必须由采取高级决策的总体政策来控制。这需要培训算法在学习这些政策时考虑这种等级决策结构。但是,实践中的培训可能会导致泛化不良,要么在很少的时间步骤执行动作,要么将其全部转变为单个政策。在我们的工作中,我们介绍了一种替代方法来依次学习此类技能,而无需使用总体层次的政策。我们在环境的背景下提出了这种方法,在这种环境的背景下,学习代理目标的主要组成部分是尽可能长时间延长情节。我们将我们提出的方法称为顺序选择评论家。我们在我们开发的灵活的模拟3D导航环境中演示了我们在导航和基于目标任务的方法的实用性。我们还表明,我们的方法优于先前的方法,例如在我们的环境中,柔软的演员和软选择评论家,以及健身房自动驾驶汽车模拟器和Atari River RAID RAID环境。
translated by 谷歌翻译
深度强化学习(DRL)是一种有前途的方法,可以通过与环境的互动来学习政策来解决复杂的控制任务。但是,对DRL政策的培训需要大量的培训经验,这使得直接了解物理系统的政策是不切实际的。 SIM到运行的方法可以利用模拟来验证DRL政策,然后将其部署在现实世界中。不幸的是,经过验证的政策的直接现实部署通常由于不同的动态(称为现实差距)而遭受性能恶化。最近的SIM到现实方法,例如域随机化和域的适应性,重点是改善预审预告剂的鲁棒性。然而,经过模拟训练的策略通常需要使用现实世界中的数据来调整以达到最佳性能,这是由于现实世界样本的高成本而具有挑战性的。这项工作提出了一个分布式的云边缘建筑,以实时培训现实世界中的DRL代理。在体系结构中,推理和训练被分配到边缘和云,将实时控制循环与计算昂贵的训练回路分开。为了克服现实差距,我们的体系结构利用了SIM到现实的转移策略,以继续在物理系统上训练模拟预言的代理。我们证明了其在物理倒置螺旋控制系统上的适用性,分析了关键参数。现实世界实验表明,我们的体系结构可以使验证的DRL代理能够始终如一,有效地看不见动态。
translated by 谷歌翻译
本文介绍了一些最先进的加强学习算法的基准研究,用于解决两个模拟基于视觉的机器人问题。本研究中考虑的算法包括软演员 - 评论家(SAC),近端政策优化(PPO),内插政策梯度(IPG),以及与后敏感体验重播(她)的变体。将这些算法的性能与Pybullet的两个仿真环境进行比较,称为KukadiverseObjectenV和raceCarzedgymenv。这些环境中的状态观察以RGB图像的形式提供,并且动作空间是连续的,使得它们难以解决。建议许多策略提供在基本上单目标环境的这些问题上实施算法所需的中级后敏感目标。另外,提出了许多特征提取架构在学习过程中纳入空间和时间关注。通过严格的模拟实验,建立了这些组分实现的改进。据我们所知,这种基准测试的基础基础是基于视觉的机器人问题的基准研究,使其成为该领域的新贡献。
translated by 谷歌翻译
Figure 1: A five-fingered humanoid hand trained with reinforcement learning manipulating a block from an initial configuration to a goal configuration using vision for sensing.
translated by 谷歌翻译
许多现实世界的应用程序都可以作为多机构合作问题进行配置,例如网络数据包路由和自动驾驶汽车的协调。深入增强学习(DRL)的出现为通过代理和环境的相互作用提供了一种有前途的多代理合作方法。但是,在政策搜索过程中,传统的DRL解决方案遭受了多个代理具有连续动作空间的高维度。此外,代理商政策的动态性使训练非平稳。为了解决这些问题,我们建议采用高级决策和低水平的个人控制,以进行有效的政策搜索,提出一种分层增强学习方法。特别是,可以在高级离散的动作空间中有效地学习多个代理的合作。同时,低水平的个人控制可以减少为单格强化学习。除了分层增强学习外,我们还建议对手建模网络在学习过程中对其他代理的政策进行建模。与端到端的DRL方法相反,我们的方法通过以层次结构将整体任务分解为子任务来降低学习的复杂性。为了评估我们的方法的效率,我们在合作车道变更方案中进行了现实世界中的案例研究。模拟和现实世界实验都表明我们的方法在碰撞速度和收敛速度中的优越性。
translated by 谷歌翻译
尽管许多多机器人协调问题可以通过精确算法最佳解决,但在机器人数量中通常无法扩展解决方案。多代理强化学习(MARL)正在在机器人社区中越来越关注,这是解决此类问题的一种有希望的解决方案。然而,我们仍然缺乏使我们能够快速有效地找到大规模集体学习任务的解决方案的工具。在这项工作中,我们介绍了矢量化的多代理模拟器(VMA)。 VMA是一个旨在有效的Marl基准测试的开源框架。它由用pytorch编写的矢量化2D物理引擎和一组十二个具有挑战性的多机器人场景组成。可以通过简单的模块化接口实现其他方案。我们证明了矢量化如何在没有增加复杂性的情况下对加速硬件进行并行模拟。在将VMA与OpenAI MPE进行比较时,我们显示了MPE的执行时间如何在模拟数量中线性增加,而VMA可以在10秒内执行30,000个并行模拟,证明超过100倍以上。使用VMA的RLLIB接口,我们使用基于各种近端策略优化(PPO)的MARL算法对多机器人方案进行基准测试。 VMA的场景以正交方式证明了最先进的MARL算法的挑战。 VMA框架可在https://github.com/proroklab/dectorizedmultiagentsimulator上获得。 VMA场景和实验的视频可在https://youtu.be/aadryfiesay} {here} \ footnote {\ url {https://youtu.be/aadryfiesay上获得。
translated by 谷歌翻译
随着自动驾驶行业的发展,自动驾驶汽车群体的潜在相互作用也随之增长。结合人工智能和模拟的进步,可以模拟此类组,并且可以学习控制内部汽车的安全模型。这项研究将强化学习应用于多代理停车场的问题,在那里,汽车旨在有效地停车,同时保持安全和理性。利用强大的工具和机器学习框架,我们以马尔可夫决策过程的形式与独立学习者一起设计和实施灵活的停车环境,从而利用多代理通信。我们实施了一套工具来进行大规模执行实验,从而取得了超过98.1%成功率的高达7辆汽车的模型,从而超过了现有的单代机构模型。我们还获得了与汽车在我们环境中表现出的竞争性和协作行为有关的几个结果,这些行为的密度和沟通水平各不相同。值得注意的是,我们发现了一种没有竞争的合作形式,以及一种“泄漏”的合作形式,在没有足够状态的情况下,代理商进行了协作。这种工作在自动驾驶和车队管理行业中具有许多潜在的应用,并为将强化学习应用于多机构停车场提供了几种有用的技术和基准。
translated by 谷歌翻译
We present Habitat, a platform for research in embodied artificial intelligence (AI). Habitat enables training embodied agents (virtual robots) in highly efficient photorealistic 3D simulation. Specifically, Habitat consists of: (i) Habitat-Sim: a flexible, high-performance 3D simulator with configurable agents, sensors, and generic 3D dataset handling. Habitat-Sim is fast -when rendering a scene from Matterport3D, it achieves several thousand frames per second (fps) running single-threaded, and can reach over 10,000 fps multi-process on a single GPU. (ii) Habitat-API: a modular high-level library for end-toend development of embodied AI algorithms -defining tasks (e.g. navigation, instruction following, question answering), configuring, training, and benchmarking embodied agents.These large-scale engineering contributions enable us to answer scientific questions requiring experiments that were till now impracticable or 'merely' impractical. Specifically, in the context of point-goal navigation: (1) we revisit the comparison between learning and SLAM approaches from two recent works [20,16] and find evidence for the opposite conclusion -that learning outperforms SLAM if scaled to an order of magnitude more experience than previous investigations, and (2) we conduct the first cross-dataset generalization experiments {train, test} × {Matterport3D, Gibson} for multiple sensors {blind, RGB, RGBD, D} and find that only agents with depth (D) sensors generalize across datasets. We hope that our open-source platform and these findings will advance research in embodied AI.
translated by 谷歌翻译
We adapt the ideas underlying the success of Deep Q-Learning to the continuous action domain. We present an actor-critic, model-free algorithm based on the deterministic policy gradient that can operate over continuous action spaces. Using the same learning algorithm, network architecture and hyper-parameters, our algorithm robustly solves more than 20 simulated physics tasks, including classic problems such as cartpole swing-up, dexterous manipulation, legged locomotion and car driving. Our algorithm is able to find policies whose performance is competitive with those found by a planning algorithm with full access to the dynamics of the domain and its derivatives. We further demonstrate that for many of the tasks the algorithm can learn policies "end-to-end": directly from raw pixel inputs.
translated by 谷歌翻译