We propose and study a task we name panoptic segmentation (PS). Panoptic segmentation unifies the typically distinct tasks of semantic segmentation (assign a class label to each pixel) and instance segmentation (detect and segment each object instance). The proposed task requires generating a coherent scene segmentation that is rich and complete, an important step toward real-world vision systems. While early work in computer vision addressed related image/scene parsing tasks, these are not currently popular, possibly due to lack of appropriate metrics or associated recognition challenges. To address this, we propose a novel panoptic quality (PQ) metric that captures performance for all classes (stuff and things) in an interpretable and unified manner. Using the proposed metric, we perform a rigorous study of both human and machine performance for PS on three existing datasets, revealing interesting insights about the task. The aim of our work is to revive the interest of the community in a more unified view of image segmentation.
translated by 谷歌翻译
为视频中的每个像素分配语义类和跟踪身份的任务称为视频Panoptic分段。我们的工作是第一个在真实世界中瞄准这项任务,需要在空间和时间域中的密集解释。由于此任务的地面真理难以获得,但是,现有数据集是合成构造的或仅在短视频剪辑中稀疏地注释。为了克服这一点,我们介绍了一个包含两个数据集,Kitti-Step和Motchallenge步骤的新基准。数据集包含长视频序列,提供具有挑战性的示例和用于研究长期像素精确分割和在真实条件下跟踪的测试床。我们进一步提出了一种新的评估度量分割和跟踪质量(STQ),其相当余额平衡该任务的语义和跟踪方面,并且更适合评估任意长度的序列。最后,我们提供了几个基线来评估此新具有挑战性数据集的现有方法的状态。我们已将我们的数据集,公制,基准服务器和基准公开提供,并希望这将激发未来的研究。
translated by 谷歌翻译
The recently introduced panoptic segmentation task has renewed our community's interest in unifying the tasks of instance segmentation (for thing classes) and semantic segmentation (for stuff classes). However, current state-ofthe-art methods for this joint task use separate and dissimilar networks for instance and semantic segmentation, without performing any shared computation. In this work, we aim to unify these methods at the architectural level, designing a single network for both tasks. Our approach is to endow Mask R-CNN, a popular instance segmentation method, with a semantic segmentation branch using a shared Feature Pyramid Network (FPN) backbone. Surprisingly, this simple baseline not only remains effective for instance segmentation, but also yields a lightweight, topperforming method for semantic segmentation. In this work, we perform a detailed study of this minimally extended version of Mask R-CNN with FPN, which we refer to as Panoptic FPN, and show it is a robust and accurate baseline for both tasks. Given its effectiveness and conceptual simplicity, we hope our method can serve as a strong baseline and aid future research in panoptic segmentation.
translated by 谷歌翻译
In this paper, we propose a unified panoptic segmentation network (UPSNet) for tackling the newly proposed panoptic segmentation task. On top of a single backbone residual network, we first design a deformable convolution based semantic segmentation head and a Mask R-CNN style instance segmentation head which solve these two subtasks simultaneously. More importantly, we introduce a parameter-free panoptic head which solves the panoptic segmentation via pixel-wise classification. It first leverages the logits from the previous two heads and then innovatively expands the representation for enabling prediction of an extra unknown class which helps better resolve the conflicts between semantic and instance segmentation. Additionally, it handles the challenge caused by the varying number of instances and permits back propagation to the bottom modules in an end-to-end manner. Extensive experimental results on Cityscapes, COCO and our internal dataset demonstrate that our UPSNet achieves stateof-the-art performance with much faster inference. Code has been made available at: https://github.com/ uber-research/UPSNet. * Equal contribution.† This work was done when Hengshuang Zhao was an intern at Uber ATG.
translated by 谷歌翻译
视频分析的图像分割在不同的研究领域起着重要作用,例如智能城市,医疗保健,计算机视觉和地球科学以及遥感应用。在这方面,最近致力于发展新的细分策略;最新的杰出成就之一是Panoptic细分。后者是由语义和实例分割的融合引起的。明确地,目前正在研究Panoptic细分,以帮助获得更多对视频监控,人群计数,自主驾驶,医学图像分析的图像场景的更细致的知识,以及一般对场景更深入的了解。为此,我们介绍了本文的首次全面审查现有的Panoptic分段方法,以获得作者的知识。因此,基于所采用的算法,应用场景和主要目标的性质,执行现有的Panoptic技术的明确定义分类。此外,讨论了使用伪标签注释新数据集的Panoptic分割。继续前进,进行消融研究,以了解不同观点的Panoptic方法。此外,讨论了适合于Panoptic分割的评估度量,并提供了现有解决方案性能的比较,以告知最先进的并识别其局限性和优势。最后,目前对主题技术面临的挑战和吸引不久的将来吸引相当兴趣的未来趋势,可以成为即将到来的研究研究的起点。提供代码的文件可用于:https://github.com/elharroussomar/awesome-panoptic-egation
translated by 谷歌翻译
Panoptic图像分割是计算机视觉任务,即在图像中查找像素组并为其分配语义类别和对象实例标识符。由于其在机器人技术和自动驾驶中的关键应用,图像细分的研究变得越来越流行。因此,研究社区依靠公开可用的基准数据集来推进计算机视觉中的最新技术。但是,由于将图像标记为高昂的成本,因此缺乏适合全景分割的公开地面真相标签。高标签成本还使得将现有数据集扩展到视频域和多相机设置是一项挑战。因此,我们介绍了Waymo Open DataSet:全景视频全景分割数据集,这是一个大型数据集,它提供了用于自主驾驶的高质量的全景分割标签。我们使用公开的Waymo打开数据集生成数据集,利用各种相机图像集。随着时间的推移,我们的标签是一致的,用于视频处理,并且在车辆上安装的多个摄像头保持一致,以了解全景的理解。具体而言,我们为28个语义类别和2,860个时间序列提供标签,这些标签由在三个不同地理位置驾驶的自动驾驶汽车上安装的五个摄像机捕获,从而导致总共标记为100k标记的相机图像。据我们所知,这使我们的数据集比现有的数据集大量数据集大的数量级。我们进一步提出了一个新的基准,用于全景视频全景分割,并根据DeepLab模型家族建立许多强大的基准。我们将公开制作基准和代码。在https://waymo.com/open上找到数据集。
translated by 谷歌翻译
Panoptic现场了解和跟踪动态代理对于机器人和自动化车辆至关重要,以在城市环境中导航。由于LiDAR提供了方案的精确照明和几何描绘,使用LIDAR点云执行这些任务提供可靠的预测。然而,现有数据集缺乏城市场景类型的多样性,并且具有有限数量的动态对象实例,其阻碍了这些任务的学习以及开发方法的可信基准。在本文中,我们介绍了大规模的Panoptic Nuscenes基准数据集,它扩展了我们流行的NUSCENES DataSet,具有用于语义分割,Panoptic分段和Panoptic跟踪任务的Pock-Wise Trountruth annotations。为了便于比较,我们为我们提出的数据集提供了几个任务的强大基线。此外,我们分析了Panoptic跟踪的现有度量标准的缺点,并提出了一种解决问题的小说实例的Pat度量。我们提供详尽的实验,展示了Panoptic Nuscenes与现有数据集相比的效用,并在Nuscenes.org提供的在线评估服务器。我们认为,此扩展将加快新颖的现场了解动态城市环境的新方法研究。
translated by 谷歌翻译
尽管广泛用作可视检测任务的性能措施,但平均精度(AP)In(i)的限制在反映了本地化质量,(ii)对其计算的设计选择的鲁棒性以及其对输出的适用性没有信心分数。 Panoptic质量(PQ),提出评估Panoptic Seationation(Kirillov等,2019)的措施,不会遭受这些限制,而是限于Panoptic Seationation。在本文中,我们提出了基于其本地化和分类质量的视觉检测器的平均匹配误差,提出了定位召回精度(LRP)误差。 LRP错误,最初仅为Oksuz等人进行对象检测。 (2018),不遭受上述限制,适用于所有视觉检测任务。我们还介绍了最佳LRP(OLRP)错误,因为通过置信区获得的最小LRP错误以评估视觉检测器并获得部署的最佳阈值。我们提供对AP和PQ的LRP误差的详细比较分析,并使用七个可视检测任务(即对象检测,关键点检测,实例分割,Panoptic分段,视觉关系检测,使用近100个最先进的视觉检测器零拍摄检测和广义零拍摄检测)使用10个数据集来统一地显示LRP误差提供比其对应物更丰富和更辨别的信息。可用的代码:https://github.com/kemaloksuz/lrp-error
translated by 谷歌翻译
Progress on object detection is enabled by datasets that focus the research community's attention on open challenges. This process led us from simple images to complex scenes and from bounding boxes to segmentation masks. In this work, we introduce LVIS (pronounced 'el-vis'): a new dataset for Large Vocabulary Instance Segmentation. We plan to collect ∼2 million high-quality instance segmentation masks for over 1000 entry-level object categories in 164k images. Due to the Zipfian distribution of categories in natural images, LVIS naturally has a long tail of categories with few training samples. Given that state-of-the-art deep learning methods for object detection perform poorly in the low-sample regime, we believe that our dataset poses an important and exciting new scientific challenge. LVIS is available at http://www.lvisdataset.org.
translated by 谷歌翻译
Panoptic semonation组合实例和语义预测,允许同时检测“事物”和“东西”。在许多具有挑战性的问题中有效地接近远程感测的数据中的Panoptic分段可能是吉祥的,因为它允许连续映射和特定的目标计数。有几个困难阻止了遥感中这项任务的增长:(a)大多数算法都设计用于传统图像,(b)图像标签必须包含“事物”和“填写”类,并且(c)注释格式复杂。因此,旨在解决和提高遥感中Panoptic分割的可操作性,这项研究有五个目标:(1)创建一个新的Panoptic分段数据准备管道,(2)提出注释转换软件以产生Panoptic注释; (3)在城市地区提出一个小说数据集,(4)修改任务的Detectron2,(5)评估城市环境中这项任务的困难。我们使用的空中图像,考虑14级,使用0,24米的空间分辨率。我们的管道考虑了三个图像输入,所提出的软件使用点Shapefile来创建Coco格式的样本。我们的研究生成了3,400个样本,具有512x512像素尺寸。我们使用了带有两个骨干板(Reset-50和Reset-101)的Panoptic-FPN,以及模型评估被视为语义实例和Panoptic指标。我们获得了93.9,47.7和64.9的平均iou,box ap和pq。我们的研究提出了一个用于Panoptic Seation的第一个有效管道,以及用于其他研究人员的广泛数据库使用和处理需要彻底了解的其他数据或相关问题。
translated by 谷歌翻译
我们介绍了一个新的图像分段任务,称为实体分段(ES),该任务旨在在不预测其语义标签的情况下划分图像中的所有视觉实体(对象和填充)。通过删除类标签预测的需要,对此类任务培训的模型可以更多地关注提高分割质量。它具有许多实际应用,例如图像操纵和编辑,其中分割掩模的质量至关重要,但类标签不太重要。我们通过统一的方式调查第一次研究,以调查卷大中心的代表对分割事物和东西的可行性,并显示这种代表在es的背景下非常好。更具体地说,我们提出了一种类似的完全卷积的架构,具有两种新颖的模块,专门设计用于利用es的类无话和非重叠要求。实验表明,在分割质量方面设计和培训的模型显着优于流行的专用Panoptic分段模型。此外,可以在多个数据集的组合中容易地培训ES模型,而无需解决数据集合并中的标签冲突,并且在一个或多个数据集中培训的模型可以概括到未经看管域的其他测试数据集。代码已在https://github.com/dvlab-research/entity发布。
translated by 谷歌翻译
Panoptic Part Segmentation (PPS) unifies panoptic segmentation and part segmentation into one task. Previous works utilize separated approaches to handle thing, stuff, and part predictions without shared computation and task association. We aim to unify these tasks at the architectural level, designing the first end-to-end unified framework named Panoptic-PartFormer. Moreover, we find the previous metric PartPQ biases to PQ. To handle both issues, we make the following contributions: Firstly, we design a meta-architecture that decouples part feature and things/stuff feature, respectively. We model things, stuff, and parts as object queries and directly learn to optimize all three forms of prediction as a unified mask prediction and classification problem. We term our model as Panoptic-PartFormer. Secondly, we propose a new metric Part-Whole Quality (PWQ) to better measure such task from both pixel-region and part-whole perspectives. It can also decouple the error for part segmentation and panoptic segmentation. Thirdly, inspired by Mask2Former, based on our meta-architecture, we propose Panoptic-PartFormer++ and design a new part-whole cross attention scheme to further boost part segmentation qualities. We design a new part-whole interaction method using masked cross attention. Finally, the extensive ablation studies and analysis demonstrate the effectiveness of both Panoptic-PartFormer and Panoptic-PartFormer++. Compared with previous Panoptic-PartFormer, our Panoptic-PartFormer++ achieves 2% PartPQ and 3% PWQ improvements on the Cityscapes PPS dataset and 5% PartPQ on the Pascal Context PPS dataset. On both datasets, Panoptic-PartFormer++ achieves new state-of-the-art results with a significant cost drop of 70% on GFlops and 50% on parameters. Our models can serve as a strong baseline and aid future research in PPS. Code will be available.
translated by 谷歌翻译
TU Dresden www.cityscapes-dataset.net train/val -fine annotation -3475 images train -coarse annotation -20 000 images test -fine annotation -1525 images
translated by 谷歌翻译
对于现代自治系统来说,可靠的场景理解是必不可少的。当前基于学习的方法通常试图根据仅考虑分割质量的细分指标来最大化其性能。但是,对于系统在现实世界中的安全操作,考虑预测的不确定性也至关重要。在这项工作中,我们介绍了不确定性感知的全景分段的新任务,该任务旨在预测每个像素语义和实例分割,以及每个像素不确定性估计。我们定义了两个新颖的指标,以促进其定量分析,不确定性感知的综合质量(UPQ)和全景预期校准误差(PECE)。我们进一步提出了新型的自上而下的证据分割网络(EVPSNET),以解决此任务。我们的架构采用了一个简单而有效的概率融合模块,该模块利用了预测的不确定性。此外,我们提出了一种新的LOV \'ASZ证据损失函数,以优化使用深度证据学习概率的分割的IOU。此外,我们提供了几个强大的基线,将最新的泛型分割网络与无抽样的不确定性估计技术相结合。广泛的评估表明,我们的EVPSNET可以实现标准综合质量(PQ)的新最新技术,以及我们的不确定性倾斜度指标。
translated by 谷歌翻译
现代方法通常将语义分割标记为每个像素分类任务,而使用替代掩码分类处理实例级分割。我们的主要洞察力:掩码分类是足够的一般,可以使用完全相同的模型,丢失和培训过程来解决语义和实例级分段任务。在此观察之后,我们提出了一个简单的掩模分类模型,该模型预测了一组二进制掩码,每个模型与单个全局类标签预测相关联。总的来说,所提出的基于掩模分类的方法简化了语义和Panoptic分割任务的有效方法的景观,并显示出优异的经验结果。特别是,当类的数量大时,我们观察到掩码形成器优于每个像素分类基线。我们的面具基于分类的方法优于当前最先进的语义(ADE20K上的55.6 miou)和Panoptic Seation(Coco)模型的Panoptic Seationation(52.7 PQ)。
translated by 谷歌翻译
全景部分分割(PPS)旨在将泛型分割和部分分割统一为一个任务。先前的工作主要利用分离的方法来处理事物,物品和部分预测,而无需执行任何共享的计算和任务关联。在这项工作中,我们旨在将这些任务统一在架构层面上,设计第一个名为Panoptic-Partformer的端到端统一方法。特别是,由于视觉变压器的最新进展,我们将事物,内容和部分建模为对象查询,并直接学会优化所有三个预测作为统一掩码的预测和分类问题。我们设计了一个脱钩的解码器,以分别生成零件功能和事物/东西功能。然后,我们建议利用所有查询和相应的特征共同执行推理。最终掩码可以通过查询和相应特征之间的内部产品获得。广泛的消融研究和分析证明了我们框架的有效性。我们的全景局势群体在CityScapes PPS和Pascal Context PPS数据集上实现了新的最新结果,至少有70%的GFLOPS和50%的参数降低。特别是,在Pascal上下文PPS数据集上采用SWIN Transformer后,我们可以通过RESNET50骨干链和10%的改进获得3.4%的相对改进。据我们所知,我们是第一个通过\ textit {统一和端到端变压器模型来解决PPS问题的人。鉴于其有效性和概念上的简单性,我们希望我们的全景贡献者能够充当良好的基准,并帮助未来的PPS统一研究。我们的代码和型号可在https://github.com/lxtgh/panoptic-partformer上找到。
translated by 谷歌翻译
Semantic understanding of visual scenes is one of the holy grails of computer vision. Despite efforts of the community in data collection, there are still few image datasets covering a wide range of scenes and object categories with pixel-wise annotations for scene understanding. In this work, we present a densely annotated dataset ADE20K, which spans diverse annotations of scenes, objects, parts of objects, and in some cases even parts of parts. Totally there are 25k images of the complex everyday scenes containing a variety of objects in their natural spatial context. On average there are 19.5 instances and 10.5 object classes per image. Based on ADE20K, we construct benchmarks for scene parsing and instance segmentation. We provide baseline performances on both of the benchmarks and re-implement the state-ofthe-art models for open source. We further evaluate the effect of synchronized batch normalization and find that a reasonably large batch size is crucial for the semantic segmentation performance. We show that the networks trained on ADE20K are able to segment a wide variety of scenes and objects 1 .
translated by 谷歌翻译
The Mapillary Vistas Dataset is a novel, largescale street-level image dataset containing 25 000 highresolution images annotated into 66 object categories with additional, instance-specific labels for 37 classes. Annotation is performed in a dense and fine-grained style by using polygons for delineating individual objects. Our dataset is 5× larger than the total amount of fine annotations for Cityscapes and contains images from all around the world, captured at various conditions regarding weather, season and daytime. Images come from different imaging devices (mobile phones, tablets, action cameras, professional capturing rigs) and differently experienced photographers. In such a way, our dataset has been designed and compiled to cover diversity, richness of detail and geographic extent. As default benchmark tasks, we define semantic image segmentation and instance-specific image segmentation, aiming to significantly further the development of state-of-theart methods for visual road-scene understanding.
translated by 谷歌翻译
尽管自动图像分析的重要性不断增加,但最近的元研究揭示了有关算法验证的主要缺陷。性能指标对于使用的自动算法的有意义,客观和透明的性能评估和验证尤其是关键,但是在使用特定的指标进行给定的图像分析任务时,对实际陷阱的关注相对较少。这些通常与(1)无视固有的度量属性,例如在存在类不平衡或小目标结构的情况下的行为,(2)无视固有的数据集属性,例如测试的非独立性案例和(3)无视指标应反映的实际生物医学领域的兴趣。该动态文档的目的是说明图像分析领域通常应用的性能指标的重要局限性。在这种情况下,它重点介绍了可以用作图像级分类,语义分割,实例分割或对象检测任务的生物医学图像分析问题。当前版本是基于由全球60多家机构的国际图像分析专家进行的关于指标的Delphi流程。
translated by 谷歌翻译
视频分割,即将视频帧分组到多个段或对象中,在广泛的实际应用中扮演关键作用,例如电影中的视觉效果辅助,自主驾驶中的现场理解,以及视频会议中的虚拟背景创建,名称一些。最近,由于计算机愿景中的联系复兴,一直存在众多深度学习的方法,这一直专用于视频分割并提供引人注目的性能。在这项调查中,通过引入各自的任务设置,背景概念,感知需要,开发历史,以及开发历史,综合审查这一领域的两种基本研究,即在视频和视频语义分割中,即视频和视频语义分割中的通用对象分段(未知类别)。主要挑战。我们还提供关于两种方法和数据集的代表文学的详细概述。此外,我们在基准数据集中呈现了审查方法的定量性能比较。最后,我们指出了这一领域的一套未解决的开放问题,并提出了进一步研究的可能机会。
translated by 谷歌翻译