自动检测武器对于改善个人的安全性和福祉是重要的,仍然是由于各种尺寸,武器形状和外观,这是一项艰巨的任务。查看点变化和遮挡也是使这项任务更加困难的原因。此外,目前的物体检测算法处理矩形区域,但是一个细长和长的步枪可以真正地覆盖区域的一部分区域,其余部分可能包含未经紧的细节。为了克服这些问题,我们提出了一种用于定向意识武器检测的CNN架构,其提供具有改进的武器检测性能的面向边界框。所提出的模型不仅通过将角度作为分类问题的角度分成8个类而且提供方向,而是作为回归问题。对于培训我们的武器检测模型,包括总6400件武器图像的新数据集从网上收集,然后用面向定向的边界框手动注释。我们的数据集不仅提供导向的边界框作为地面真相,还提供了水平边界框。我们还以多种现代对象探测器提供我们的数据集,用于在该领域进一步研究。所提出的模型在该数据集上进行评估,并且与搁板对象检测器的比较分析产生了卓越的拟议模型的性能,以标准评估策略测量。数据集和模型实现在此链接上公开可用:https://bit.ly/2tyzicf。
translated by 谷歌翻译
由于缺乏自动注释系统,大多数发展城市的城市机构都是数字未标记的。因此,在此类城市中,位置和轨迹服务(例如Google Maps,Uber等)仍然不足。自然场景图像中的准确招牌检测是从此类城市街道检索无错误的信息的最重要任务。然而,开发准确的招牌本地化系统仍然是尚未解决的挑战,因为它的外观包括文本图像和令人困惑的背景。我们提出了一种新型的对象检测方法,该方法可以自动检测招牌,适合此类城市。我们通过合并两种专业预处理方法和一种运行时效高参数值选择算法来使用更快的基于R-CNN的定位。我们采用了一种增量方法,通过使用我们构造的SVSO(Street View Signboard对象)签名板数据集,通过详细评估和与基线进行比较,以达到最终提出的方法,这些方法包含六个发展中国家的自然场景图像。我们在SVSO数据集和Open Image数据集上展示了我们提出的方法的最新性能。我们提出的方法可以准确地检测招牌(即使图像包含多种形状和颜色的多种嘈杂背景的招牌)在SVSO独立测试集上达到0.90 MAP(平均平均精度)得分。我们的实施可在以下网址获得:https://github.com/sadrultoaha/signboard-detection
translated by 谷歌翻译
遵循机器视觉系统在线自动化质量控制和检查过程的成功之后,这项工作中为两个不同的特定应用提供了一种对象识别解决方案,即,在医院准备在医院进行消毒的手术工具箱中检测质量控制项目,以及检测血管船体中的缺陷,以防止潜在的结构故障。该解决方案有两个阶段。首先,基于单镜头多伯克斯检测器(SSD)的特征金字塔体系结构用于改善检测性能,并采用基于地面真实的统计分析来选择一系列默认框的参数。其次,利用轻量级神经网络使用回归方法来实现定向检测结果。该方法的第一阶段能够检测两种情况下考虑的小目标。在第二阶段,尽管很简单,但在保持较高的运行效率的同时,检测细长目标是有效的。
translated by 谷歌翻译
如今,使用微创手术(MIS)进行了更多的手术程序。这是由于其许多好处,例如最小的术后问题,较少的出血,较小的疤痕和快速的康复。但是,MIS的视野,小手术室和对操作场景的间接查看可能导致手术工具发生冲突并可能损害人体器官或组织。因此,通过使用内窥镜视频饲料实时检测和监视手术仪器,可以大大减少MIS问题,并且可以提高手术程序的准确性和成功率。在本文中,研究,分析和评估了对Yolov5对象检测器的一系列改进,以增强手术仪器的检测。在此过程中,我们进行了基于性能的消融研究,探索了改变Yolov5模型的骨干,颈部和锚固结构元素的影响,并注释了独特的内窥镜数据集。此外,我们将消融研究的有效性与其他四个SOTA对象探测器(Yolov7,Yolor,Scaled-Yolov4和Yolov3-SPP)进行了比较。除了Yolov3-SPP(在MAP中具有98.3%的模型性能和相似的推理速度)外,我们的所有基准模型(包括原始的Yolov5)在使用新的内窥镜数据集的实验中超过了我们的顶级精制模型。
translated by 谷歌翻译
We focus on the task of amodal 3D object detection in RGB-D images, which aims to produce a 3D bounding box of an object in metric form at its full extent. We introduce Deep Sliding Shapes, a 3D ConvNet formulation that takes a 3D volumetric scene from a RGB-D image as input and outputs 3D object bounding boxes. In our approach, we propose the first 3D Region Proposal Network (RPN) to learn objectness from geometric shapes and the first joint Object Recognition Network (ORN) to extract geometric features in 3D and color features in 2D. In particular, we handle objects of various sizes by training an amodal RPN at two different scales and an ORN to regress 3D bounding boxes. Experiments show that our algorithm outperforms the state-of-the-art by 13.8 in mAP and is 200× faster than the original Sliding Shapes. Source code and pre-trained models are available.
translated by 谷歌翻译
现在,诸如无人机之类的无人机,从捕获和目标检测的各种目的中,从Ariel Imagery等捕获和目标检测的各种目的很大使用。轻松进入这些小的Ariel车辆到公众可能导致严重的安全威胁。例如,可以通过使用无人机在公共公共场合中混合的间谍来监视关键位置。在手中研究提出了一种改进和高效的深度学习自治系统,可以以极大的精度检测和跟踪非常小的无人机。建议的系统由自定义深度学习模型Tiny Yolov3组成,其中一个非常快速的物体检测模型的口味之一,您只能构建并用于检测一次(YOLO)。物体检测算法将有效地检测无人机。与以前的Yolo版本相比,拟议的架构表现出显着更好的性能。在资源使用和时间复杂性方面观察到改进。使用召回和精度分别为93%和91%的测量来测量性能。
translated by 谷歌翻译
State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with "attention" mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3], our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
translated by 谷歌翻译
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles which combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy and optimization function, etc. In this paper, we provide a review on deep learning based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely Convolutional Neural Network (CNN). Then we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network based learning systems.
translated by 谷歌翻译
居住在美国的每个妇女在8次发育侵袭性乳腺癌的可能性下有大约1。有丝分裂细胞计数是评估乳腺癌侵袭性或等级最常见的测试之一。在该预后,必须通过病理学家使用高分辨率显微镜检查组织病理学图像以计算细胞。不幸的是,可以是一种完整的任务,可重复性差,特别是对于非专家来说。最近深入学习网络适用于能够自动定位这些感兴趣区域的医学应用。然而,这些基于区域的网络缺乏利用通常用作唯一检测方法的完整图像CNN产生的分割特征的能力。因此,所提出的方法利用更快的RCNN进行对象检测,同时使用RGB图像特征的UNET产生的分割特征,以实现在Mitos-Atypia 2014分数上的F分数为0.508,计数数据集,优于最先进的攻击方法。
translated by 谷歌翻译
检测定向对象以及估计其旋转信息是用于分析遥感图像的一个关键步骤。尽管最近提出了许多方法,但大多数人直接学习在仅单独的一个(例如旋转角度)的监督下预测对象方向或仅为几(例如旋转角度)或几(例如若干坐标)地基值。在训练期间采用了关于提议和旋转信息回归的额外约束,在额外约束,在训练期间采用了更准确的对象检测。为此,我们创新地提出了一种通过Naive几何计算以一致的方式同时学习物体的水平提出,面向建议和旋转角度的机制,作为一个额外的稳定约束(参见图1)。提出了一个导向的中心先前引导标签分配策略,以进一步提高建议的质量,产生更好的性能。广泛的实验表明,配备我们的想法的模型显着优于基线,通过大幅度来实现新的最先进的结果,在推理期间没有任何额外的计算负担。我们提出的想法简单直观,可以随时实现。源代码和培训的型号涉及补充文件。
translated by 谷歌翻译
定向对象检测是在空中图像中的具有挑战性的任务,因为航空图像中的物体以任意的方向显示并且经常密集包装。主流探测器使用五个参数或八个主角表示描述了旋转对象,这遭受了定向对象定义的表示模糊性。在本文中,我们提出了一种基于平行四边形的面积比的新型表示方法,称为ARP。具体地,ARP回归定向对象的最小边界矩形和三个面积比。三个面积比包括指向物体与最小的外接矩形的面积比和两个平行四边形到最小的矩形。它简化了偏移学习,消除了面向对象的角度周期性或标签点序列的问题。为了进一步弥补近横向物体的混淆问题,采用对象和其最小的外缘矩形的面积比来指导每个物体的水平或定向检测的选择。此外,使用水平边界盒和三个面积比的旋转高效交叉点(R-EIOU)丢失和三个面积比旨在优化用于旋转对象的边界盒回归。遥感数据集的实验结果,包括HRSC2016,DOTA和UCAS-AOD,表明我们的方法达到了卓越的检测性能,而不是许多最先进的方法。
translated by 谷歌翻译
物体检测在计算机视觉中取得了巨大的进步。具有外观降级的小物体检测是一个突出的挑战,特别是对于鸟瞰观察。为了收集足够的阳性/阴性样本进行启发式训练,大多数物体探测器预设区域锚,以便将交叉联盟(iou)计算在地面判处符号数据上。在这种情况下,小物体经常被遗弃或误标定。在本文中,我们提出了一种有效的动态增强锚(DEA)网络,用于构建新颖的训练样本发生器。与其他最先进的技术不同,所提出的网络利用样品鉴别器来实现基于锚的单元和无锚单元之间的交互式样本筛选,以产生符合资格的样本。此外,通过基于保守的基于锚的推理方案的多任务联合训练增强了所提出的模型的性能,同时降低计算复杂性。所提出的方案支持定向和水平对象检测任务。对两个具有挑战性的空中基准(即,DotA和HRSC2016)的广泛实验表明,我们的方法以适度推理速度和用于训练的计算开销的准确性实现最先进的性能。在DotA上,我们的DEA-NET与ROI变压器的基线集成了0.40%平均平均精度(MAP)的先进方法,以便用较弱的骨干网(Resnet-101 VS Resnet-152)和3.08%平均 - 平均精度(MAP),具有相同骨干网的水平对象检测。此外,我们的DEA网与重新排列的基线一体化实现最先进的性能80.37%。在HRSC2016上,它仅使用3个水平锚点超过1.1%的最佳型号。
translated by 谷歌翻译
随着深度卷积神经网络的兴起,对象检测在过去几年中取得了突出的进步。但是,这种繁荣无法掩盖小物体检测(SOD)的不令人满意的情况,这是计算机视觉中臭名昭著的挑战性任务之一,这是由于视觉外观不佳和由小目标的内在结构引起的嘈杂表示。此外,用于基准小对象检测方法基准测试的大规模数据集仍然是瓶颈。在本文中,我们首先对小物体检测进行了详尽的审查。然后,为了催化SOD的发展,我们分别构建了两个大规模的小物体检测数据集(SODA),SODA-D和SODA-A,分别集中在驾驶和空中场景上。 SODA-D包括24704个高质量的交通图像和277596个9个类别的实例。对于苏打水,我们收集2510个高分辨率航空图像,并在9个类别上注释800203实例。众所周知,拟议的数据集是有史以来首次尝试使用针对多类SOD量身定制的大量注释实例进行大规模基准测试。最后,我们评估主流方法在苏打水上的性能。我们预计发布的基准可以促进SOD的发展,并产生该领域的更多突破。数据集和代码将很快在:\ url {https://shaunyuan22.github.io/soda}上。
translated by 谷歌翻译
近年来,将多光谱数据集成在对象检测中,尤其是可见的和红外图像。由于可见(RGB)和红外(IR)图像可以提供互补的信息来处理光变化,因此在许多领域中使用了配对图像,例如多光谱的行人检测,RGB-IR人群计数和RGB-IR显着对象检测。与天然RGB-IR图像相比,我们发现空中RGB-IR图像中的检测遭受跨模式弱的未对准问题,这些问题表现在同一物体的位置,大小和角度偏差。在本文中,我们主要解决了空中RGB-IR图像中跨模式弱未对准的挑战。具体而言,我们首先解释和分析了弱错位问题的原因。然后,我们提出了一个翻译尺度的反向对齐(TSRA)模块,以通过校准这两种方式的特征图来解决问题。该模块通过对齐过程预测了两个模式对象之间的偏差,并利用模态选择(MS)策略来提高对齐的性能。最后,基于TSRA模块的两流特征比对检测器(TSFADET)是为空中图像中的RGB-IR对象检测构建的。通过对公共无人机数据集进行的全面实验,我们验证我们的方法是否降低了交叉模式未对准的效果并实现了可靠的检测结果。
translated by 谷歌翻译
在过去的十年中,由于航空图像引起的物体的规模和取向的巨大变化,对象检测已经实现了自然图像中的显着进展,而不是在空中图像中。更重要的是,缺乏大规模基准已成为在航拍图像(ODAI)中对物体检测发展的主要障碍。在本文中,我们在航空图像(DotA)中的物体检测和用于ODAI的综合基线的大规模数据集。所提出的DOTA数据集包含1,793,658个对象实例,18个类别的面向边界盒注释从11,268个航拍图像中收集。基于该大规模和注释的数据集,我们构建了具有超过70个配置的10个最先进算法的基线,其中已经评估了每个模型的速度和精度性能。此外,我们为ODAI提供了一个代码库,并建立一个评估不同算法的网站。以前在Dota上运行的挑战吸引了全球1300多队。我们认为,扩大的大型DOTA数据集,广泛的基线,代码库和挑战可以促进鲁棒算法的设计和对空中图像对象检测问题的可再现研究。
translated by 谷歌翻译
We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance.Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
translated by 谷歌翻译
We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. SSD is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stages and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, COCO, and ILSVRC datasets confirm that SSD has competitive accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. For 300 × 300 input, SSD achieves 74.3% mAP 1 on VOC2007 test at 59 FPS on a Nvidia Titan X and for 512 × 512 input, SSD achieves 76.9% mAP, outperforming a comparable state-of-the-art Faster R-CNN model. Compared to other single stage methods, SSD has much better accuracy even with a smaller input image size. Code is available at: https://github.com/weiliu89/caffe/tree/ssd .
translated by 谷歌翻译
现有的锚定面向对象检测方法已经实现了惊人的结果,但这些方法需要一些手动预设盒,这引入了额外的超参数和计算。现有的锚定方法通常具有复杂的架构,并且不易部署。我们的目标是提出一种简单易于部署的空中图像检测算法。在本文中,我们介绍了基于FCOS的单级锚定旋转对象检测器(FCOSR),可以在大多数平台上部署。 FCOSR具有简单的架构,包括卷积图层。我们的工作侧重于培训阶段的标签分配策略。我们使用椭圆中心采样方法来定义面向定向框(obb)的合适采样区域。模糊样本分配策略为重叠对象提供合理的标签。为解决采样问题不足,设计了一种多级采样模块。这些策略将更合适的标签分配给培训样本。我们的算法分别在DOTA1.0,DOTA1.5和HRSC2016数据集上实现79.25,75.41和90.15映射。 FCOSR在单规模评估中展示了其他方法的卓越性能。我们将轻量级FCOSR模型转换为Tensorrt格式,该格式在Dota1.0上以10.68 fps在jetson Xavier NX上实现73.93映射。该代码可用于:https://github.com/lzh420202/fcosr
translated by 谷歌翻译
Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of wellannotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect 2806 aerial images from different sensors and platforms. Each image is of the size about 4000 × 4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using 15 common object categories. The fully annotated DOTA images contains 188, 282 instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral. To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.
translated by 谷歌翻译
工业X射线分析在需要保证某些零件的结构完整性的航空航天,汽车或核行业中很常见。但是,射线照相图像的解释有时很困难,可能导致两名专家在缺陷分类上不同意。本文介绍的自动缺陷识别(ADR)系统将减少分析时间,还将有助于减少对缺陷的主观解释,同时提高人类检查员的可靠性。我们的卷积神经网络(CNN)模型达到94.2 \%准确性(MAP@iou = 50 \%),当应用于汽车铝铸件数据集(GDXRAR)时,它被认为与预期的人类性能相似,超过了当前状态该数据集的艺术。在工业环境上,其推理时间少于每个DICOM图像,因此可以安装在生产设施上,不会影响交付时间。此外,还进行了对主要高参数的消融研究,以优化从75 \%映射的初始基线结果最高94.2 \%map的模型准确性。
translated by 谷歌翻译