我们为指定实体识别(NER)提出了一个有效的双重编码框架,该框架将对比度学习用于映射候选文本跨度,并将实体类型映射到同一矢量表示空间中。先前的工作主要将NER作为序列标记或跨度分类。相反,我们将NER视为一个度量学习问题,它最大程度地提高了实体提及的向量表示之间的相似性及其类型。这使得易于处理嵌套和平坦的ner,并且可以更好地利用嘈杂的自我诉讼信号。 NER对本双重编码器制定的主要挑战在于将非实体跨度与实体提及分开。我们没有明确标记所有非实体跨度为外部(O)与大多数先前方法相同的类别(O),而是引入了一种新型的动态阈值损失,这与标准的对比度损失一起学习。实验表明,我们的方法在受到监督和远处有监督的设置中的表现良好(例如,Genia,NCBI,BC5CDR,JNLPBA)。
translated by 谷歌翻译
跨度提取,旨在从纯文本中提取文本跨度(如单词或短语),是信息提取中的基本过程。最近的作品介绍了通过将跨度提取任务正式化为问题(QA正式化)的跨度提取任务来提高文本表示,以实现最先进的表现。然而,QA正规化并没有充分利用标签知识并遭受培训/推理的低效率。为了解决这些问题,我们介绍了一种新的范例来整合标签知识,并进一步提出一个小说模型,明确有效地将标签知识集成到文本表示中。具体而言,它独立地编码文本和标签注释,然后将标签知识集成到文本表示中,并使用精心设计的语义融合模块进行文本表示。我们在三个典型的跨度提取任务中进行广泛的实验:扁平的网,嵌套网和事件检测。实证结果表明,我们的方法在四个基准测试中实现了最先进的性能,而且分别将培训时间和推理时间降低76%和77%,与QA形式化范例相比。我们的代码和数据可在https://github.com/apkepers/lear中获得。
translated by 谷歌翻译
对于指定的实体识别(NER),基于序列标签和基于跨度的范例大不相同。先前的研究表明,这两个范式具有明显的互补优势,但是据我们所知,很少有模型试图在单个NER模型中利用这些优势。在我们以前的工作中,我们提出了一种称为捆绑学习(BL)的范式来解决上述问题。 BL范式将两个NER范式捆绑在一起,从而使NER模型通过加权总结每个范式的训练损失来共同调整其参数。但是,三个关键问题仍未解决:BL何时起作用? BL为什么工作? BL可以增强现有的最新(SOTA)NER模型吗?为了解决前两个问题,我们实施了三个NER模型,涉及一个基于序列标签的模型-Seqner,Seqner,一个基于跨度的NER模型 - 机器人,以及将Seqner和Spanner捆绑在一起的BL-NER。我们根据来自五个域的11个NER数据集的实验结果得出两个关于这两个问题的结论。然后,我们将BL应用于现有的五个SOTA NER模型,以研究第三期,包括三个基于序列标签的模型和两个基于SPAN的模型。实验结果表明,BL始终提高其性能,表明可以通过将BL纳入当前的SOTA系统来构建新的SOTA NER系统。此外,我们发现BL降低了实体边界和类型预测错误。此外,我们比较了两种常用的标签标签方法以及三种类型的跨度语义表示。
translated by 谷歌翻译
与伯特(Bert)等语言模型相比,已证明知识增强语言表示的预培训模型在知识基础构建任务(即〜关系提取)中更有效。这些知识增强的语言模型将知识纳入预训练中,以生成实体或关系的表示。但是,现有方法通常用单独的嵌入表示每个实体。结果,这些方法难以代表播出的实体和大量参数,在其基础代币模型之上(即〜变压器),必须使用,并且可以处理的实体数量为由于内存限制,实践限制。此外,现有模型仍然难以同时代表实体和关系。为了解决这些问题,我们提出了一个新的预培训模型,该模型分别从图书中学习实体和关系的表示形式,并分别在文本中跨越跨度。通过使用SPAN模块有效地编码跨度,我们的模型可以代表实体及其关系,但所需的参数比现有模型更少。我们通过从Wikipedia中提取的知识图对我们的模型进行了预训练,并在广泛的监督和无监督的信息提取任务上进行了测试。结果表明,我们的模型比基线学习对实体和关系的表现更好,而在监督的设置中,微调我们的模型始终优于罗伯塔,并在信息提取任务上取得了竞争成果。
translated by 谷歌翻译
Neural language representation models such as BERT pre-trained on large-scale corpora can well capture rich semantic patterns from plain text, and be fine-tuned to consistently improve the performance of various NLP tasks. However, the existing pre-trained language models rarely consider incorporating knowledge graphs (KGs), which can provide rich structured knowledge facts for better language understanding. We argue that informative entities in KGs can enhance language representation with external knowledge. In this paper, we utilize both large-scale textual corpora and KGs to train an enhanced language representation model (ERNIE), which can take full advantage of lexical, syntactic, and knowledge information simultaneously. The experimental results have demonstrated that ERNIE achieves significant improvements on various knowledge-driven tasks, and meanwhile is comparable with the state-of-the-art model BERT on other common NLP tasks. The source code and experiment details of this paper can be obtained from https:// github.com/thunlp/ERNIE.
translated by 谷歌翻译
命名实体识别是定位和分类文本中的实体的任务。但是,NER数据集中未标记的实体问题严重阻碍了NER性能的改善。本文建议SCL-RAI解决这个问题。首先,我们通过基于跨度的对比学习来减少相同标签的跨度表示的距离,同时为不同的标签增加了跨度表示,从而减轻了实体之间的歧义并提高了模型对未标记的实体的稳健性。然后,我们提出检索增强推理,以减轻决策边界转移问题。我们的方法在两个现实世界数据集上大大优于先前的SOTA方法的F1分数4.21%和8.64%。
translated by 谷歌翻译
We present Pre-trained Machine Reader (PMR), a novel method to retrofit Pre-trained Language Models (PLMs) into Machine Reading Comprehension (MRC) models without acquiring labeled data. PMR is capable of resolving the discrepancy between model pre-training and downstream fine-tuning of existing PLMs, and provides a unified solver for tackling various extraction tasks. To achieve this, we construct a large volume of general-purpose and high-quality MRC-style training data with the help of Wikipedia hyperlinks and design a Wiki Anchor Extraction task to guide the MRC-style pre-training process. Although conceptually simple, PMR is particularly effective in solving extraction tasks including Extractive Question Answering and Named Entity Recognition, where it shows tremendous improvements over previous approaches especially under low-resource settings. Moreover, viewing sequence classification task as a special case of extraction task in our MRC formulation, PMR is even capable to extract high-quality rationales to explain the classification process, providing more explainability of the predictions.
translated by 谷歌翻译
We present SpanBERT, a pre-training method that is designed to better represent and predict spans of text. Our approach extends BERT by (1) masking contiguous random spans, rather than random tokens, and (2) training the span boundary representations to predict the entire content of the masked span, without relying on the individual token representations within it. Span-BERT consistently outperforms BERT and our better-tuned baselines, with substantial gains on span selection tasks such as question answering and coreference resolution. In particular, with the same training data and model size as BERT large , our single model obtains 94.6% and 88.7% F1 on SQuAD 1.1 and 2.0 respectively. We also achieve a new state of the art on the OntoNotes coreference resolution task (79.6% F1), strong performance on the TACRED relation extraction benchmark, and even gains on GLUE. 1 * Equal contribution. 1 Our code and pre-trained models are available at https://github.com/facebookresearch/ SpanBERT.
translated by 谷歌翻译
我们提出了一个新的框架,在增强的自然语言(TANL)之间的翻译,解决了许多结构化预测语言任务,包括联合实体和关系提取,嵌套命名实体识别,关系分类,语义角色标记,事件提取,COREREFED分辨率和对话状态追踪。通过培训特定于特定于任务的鉴别分类器来说,我们将其作为一种在增强的自然语言之间的翻译任务,而不是通过培训问题,而不是解决问题,而是可以轻松提取任务相关信息。我们的方法可以匹配或优于所有任务的特定于任务特定模型,特别是在联合实体和关系提取(Conll04,Ade,NYT和ACE2005数据集)上实现了新的最先进的结果,与关系分类(偶尔和默示)和语义角色标签(Conll-2005和Conll-2012)。我们在使用相同的架构和超参数的同时为所有任务使用相同的架构和超级参数,甚至在培训单个模型时同时解决所有任务(多任务学习)。最后,我们表明,由于更好地利用标签语义,我们的框架也可以显着提高低资源制度的性能。
translated by 谷歌翻译
指定的实体识别任务是信息提取的核心任务之一。单词歧义和单词缩写是命名实体低识别率的重要原因。在本文中,我们提出了一种名为“实体识别模型WCL-BBCD”(与Bert-Bilstm-Crf-Dbpedia的单词对比学习),结合了对比度学习的概念。该模型首先在文本中训练句子对,计算句子对通过余弦的相似性中的单词对之间的相似性,以及通过相似性通过相似性来命名实体识别任务的BERT模型,以减轻单词歧义。然后,将微调的BERT模型与Bilstm-CRF模型相结合,以执行指定的实体识别任务。最后,将识别结果与先验知识(例如知识图)结合使用,以减轻单词缩写引起的低速问题的识别。实验结果表明,我们的模型在Conll-2003英语数据集和Ontonotes V5英语数据集上优于其他类似的模型方法。
translated by 谷歌翻译
到目前为止,命名实体识别(ner)已经参与了三种主要类型,包括平面,重叠(嵌套)和不连续的ner,主要是单独研究。最近,为统一的人员建立了一个日益增长的兴趣,并与一个单一模型同时解决上述三个工作。当前最佳性能的方法主要包括基于跨度和序列到序列的模型,不幸的是,前者仅关注边界识别,后者可能遭受暴露偏差。在这项工作中,我们通过将统一的ner建模为Word-Word关系分类来提出一种小说替代方案,即W ^ 2ner。通过有效地建模具有下面邻近字(NNW)和尾页字 - *(THW- *)关系的实体单词之间的邻近关系来解决统一网内的内核瓶颈。基于W ^ 2ner方案,我们开发了一个神经框架,其中统一的网格被建模为单词对的2D网格。然后,我们提出了多粒度的2D卷积,以便更好地精炼网格表示。最后,共同预测器用于足够原因的单词关系。我们对14个广泛使用的基准数据集进行了广泛的实验,用于平板,重叠和不连续的NER(8英语和6个中文数据集),我们的型号击败了所有当前的顶级表演基线,推动了最先进的表演统一的网。
translated by 谷歌翻译
命名实体识别(NER)是自然语言处理中的重要任务。但是,传统的监督NER需要大规模注释的数据集。提出了远处的监督以减轻对数据集的巨大需求,但是以这种方式构建的数据集非常嘈杂,并且存在严重的未标记实体问题。交叉熵(CE)损耗函数对未标记的数据高度敏感,从而导致严重的性能降解。作为替代方案,我们提出了一种称为NRCES的新损失函数,以应对此问题。Sigmoid项用于减轻噪声的负面影响。此外,我们根据样品和训练过程平衡模型的收敛性和噪声耐受性。关于合成和现实世界数据集的实验表明,在严重的未标记实体问题的情况下,我们的方法表现出强大的鲁棒性,从而实现了现实世界数据集的新最新技术。
translated by 谷歌翻译
确定与医学实体相对应的医学文本中的跨度是许多医疗保健NLP任务的核心步骤之一,例如ICD编码,医学发现提取,医学注释上下文化等等。现有的实体提取方法依赖于医疗实体的固定词汇和有限的词汇,并且难以提取以不相交跨度为代表的实体。在本文中,我们提出了一种新的基于变压器的架构,称为OSLAT,OPEL SET LABEL COATION TRUSSSIONER,它解决了先前方法的许多局限性。我们的方法使用标签 - 注意机制来隐式学习与感兴趣的实体相关的跨度。这些实体可以作为自由文本提供,包括在OSLAT培训期间看不到的实体,即使它们是不相交的,该模型也可以提取跨度。为了测试我们方法的普遍性,我们在两个不同的数据集上训练两个单独的模型,这些数据集具有非常低的实体重叠:(1)来自HNLP的公共排放笔记数据集,以及(2)更具挑战性的专有患者文本数据集“原因”相遇”(RFE)。我们发现,应用于数据集上的OSLAT模型在应用于RFE数据集以及HNLP数据集的一部分时,在数据集上训练了基于规则和模糊字符串匹配基线,其中实体由分离跨度表示。我们的代码可以在https://github.com/curai/curai-research/tree/main/oslat上找到。
translated by 谷歌翻译
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a;Radford et al., 2018), BERT is designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be finetuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial taskspecific architecture modifications.BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).
translated by 谷歌翻译
我们介绍了精致的,这是一种有效的端到端实体链接模型,该模型使用精细的实体类型和实体描述来执行链接。该模型执行提及的检测,细粒实体键入以及单个向前传球中文档中所有提及的实体歧义,使其比现有方法快60倍以上。精制还超过了标准实体链接数据集的最先进性能,平均比3.7 F1。该模型能够将其推广到大规模的知识库,例如Wikidata(其实体是Wikipedia的15倍)和零拍的实体链接。速度,准确性和规模的结合使精制成为从网络规模数据集中提取实体的有效且具有成本效益的系统,该数据集已成功部署该模型。我们的代码和预培训模型可在https://github.com/alexa/refined上找到
translated by 谷歌翻译
基于跨度的关节提取同时进行文本跨度的指定实体识别(NER)和关系提取(RE)。最近的研究表明,令牌标签可以传达至关重要的任务特定信息并丰富令牌语义。但是,据我们所知,由于完全戒除序列标记机制,所有先前基于跨度的工作都无法使用令牌标签的形式。为了解决此问题,我们置于基于跨度的跨度网络(STSN)的序列序列标记,这是一个基于跨度的关节外推网络,该网络通过基于序列标记的NER得出的令牌生物标签信息增强。通过深入堆叠多个Atten-tion层,我们设计了一个深度的Neu-ral架构来构建STSN,每个阶层层都由三个基本注意力单元组成。深度神经体系结构首先学习了代币标签和基于SPAN的关节提取的Seman-TIC表示,然后在它们之间构建了形式的相互作用,这也实现了基于SPAN的NER和RE之间的双向信息相互关系。向热 - 我们扩展了生物标记方案,以使STSN可以提取重叠的联系。三个基准数据集的实验表明,我们的模型始终优于先前的最佳模型,从而创造了新的最新结果。
translated by 谷歌翻译
关于文本到SQL语义解析的最新研究取决于解析器本身或基于简单的启发式方法来理解自然语言查询(NLQ)。合成SQL查询时,没有可用的NLQ的明确语义信息,从而导致不良的概括性能。此外,如果没有词汇级的细粒度查询理解,查询与数据库之间的链接只能依赖模糊的字符串匹配,这会导致实际应用中的次优性能。考虑到这一点,在本文中,我们提出了一个基于令牌级的细粒度查询理解的通用,模块化的神经语义解析框架。我们的框架由三个模块组成:命名实体识别器(NER),神经实体接头(NEL)和神经语义解析器(NSP)。通过共同建模查询和数据库,NER模型可以分析用户意图并确定查询中的实体。 NEL模型将类型的实体链接到数据库中的模式和单元格值。解析器模型利用可用的语义信息并链接结果并根据动态生成的语法合成树结构的SQL查询。新发布的语义解析数据集的Squall实验表明,我们可以在WikiableQuestions(WTQ)测试集上实现56.8%的执行精度,这使最先进的模型的表现优于2.7%。
translated by 谷歌翻译
命名实体识别(NER)是检测和对实体跨越文本的跨度的任务。当实体跨越彼此之间的重叠时,此问题被称为嵌套NER。基于跨度的方法已被广泛用于应对嵌套的NER。这些方法中的大多数都会获得分数$ n \ times n $矩阵,其中$ n $表示句子的长度,每个条目对应于跨度。但是,先前的工作忽略了分数矩阵中的空间关系。在本文中,我们建议使用卷积神经网络(CNN)对分数矩阵中的这些空间关系进行建模。尽管很简单,但在三个常用的嵌套NER数据集中进行的实验表明,我们的模型超过了几种具有相同预训练的编码器的最近提出的方法。进一步的分析表明,使用CNN可以帮助模型更准确地找到嵌套实体。此外,我们发现不同的论文对三个嵌套的NER数据集使用了不同的句子引导,这将影响比较。因此,我们发布了一个预处理脚本,以促进将来的比较。
translated by 谷歌翻译
While Named Entity Recognition (NER) is a widely studied task, making inferences of entities with only a few labeled data has been challenging, especially for entities with nested structures. Unlike flat entities, entities and their nested entities are more likely to have similar semantic feature representations, drastically increasing difficulties in classifying different entity categories in the few-shot setting. Although prior work has briefly discussed nested structures in the context of few-shot learning, to our best knowledge, this paper is the first one specifically dedicated to studying the few-shot nested NER task. Leveraging contextual dependency to distinguish nested entities, we propose a Biaffine-based Contrastive Learning (BCL) framework. We first design a Biaffine span representation module for learning the contextual span dependency representation for each entity span rather than only learning its semantic representation. We then merge these two representations by the residual connection to distinguish nested entities. Finally, we build a contrastive learning framework to adjust the representation distribution for larger margin boundaries and more generalized domain transfer learning ability. We conducted experimental studies on three English, German, and Russian nested NER datasets. The results show that the BCL outperformed three baseline models on the 1-shot and 5-shot tasks in terms of F1 score.
translated by 谷歌翻译
实体联系面临着重大的挑战,例如多产的变化和普遍的歧义,特别是在具有无数实体的高价值领域。标准分类方法遭受注释瓶颈,无法有效处理看不见的实体。零拍实体链接已成为概括的方向,以概括新实体,但它仍然需要在所有实体的培训和规范描述期间提到示例,这两者都很少在维基百科外面可用。在本文中,我们通过利用易于提供的域知识来探索实体链接的知识丰富的自我监督($ \ tt kriss $)。在培训中,它会使用域本体进行未标记的文本生成自我监控的提到示例,并使用对比学习列举一个上下文编码器。出于推理,它将自我监督的提到作为每个实体的原型,并通过将测试提及映射到最相似的原型来进行链接。我们的方法归入零拍摄和少量拍摄方法,并且可以轻松地包含实体说明和黄金如果可用的标签。使用Biomedicine作为案例研究,我们对跨越生物医学文献和临床票据的七个标准数据集进行了广泛的实验。不使用任何标记信息,我们的方法为400万UMLS实体提供$ \ TT Krissbert $,这是一个Uncer Intity Linker,它可以获得新的艺术状态,优先于先前的自我监督方法,高度为20多个绝对点。
translated by 谷歌翻译