我们考虑一个平台从隐私敏感用户收集数据的问题,以估计潜在的感兴趣的参数。我们将这个问题作为贝叶斯的最佳机制设计问题,其中个人可以共享她的(可验证的)数据以换取货币奖励或服务,但同时有一个(私人)的异构隐私成本,我们量化使用差异隐私。我们考虑两个流行的差异隐私设置,为用户提供隐私保障:中央和本地。在两个设置中,我们为估计错误建立Minimax下限,并导出(接近)用户的异构隐私损失水平的最佳估计器。在这个特征上构建,我们将机制设计问题构成为最佳选择,以估计和支付将引起用户隐私敏感性的真实报告。在隐私敏感性分布的规律性条件下,我们开发有效的算法机制来解决两个隐私设置中的这个问题。我们在中央设置中的机制可以在时间$ \ mathcal {o}(n \ log n)$,其中$ n $是当地设置中的用户数以及我们的机制承认多项式时间近似方案(PTA)。
translated by 谷歌翻译
我们提出并分析了算法,以解决用户级差分隐私约束下的一系列学习任务。用户级DP仅保证只保证个人样本的隐私,而是保护用户的整个贡献($ M \ GE 1 $ Samples),而不是对信息泄漏提供更严格但更现实的保护。我们表明,对于高维平均估计,具有平稳损失,随机凸优化和学习假设类别的经验风险最小化,具有有限度量熵,隐私成本随着用户提供的$ O(1 / \ SQRT {M})$减少更多样本。相比之下,在增加用户数量$ N $时,隐私成本以较快的价格降低(1 / n)$率。我们将这些结果与下界相提并论,显示了我们算法的最低限度估计和随机凸优化的算法。我们的算法依赖于私有平均估计的新颖技术,其任意维度与误差缩放为浓度半径$ \ tai $的分布而不是整个范围。
translated by 谷歌翻译
我们给出了第一个多项式算法来估计$ d $ -variate概率分布的平均值,从$ \ tilde {o}(d)$独立的样本受到纯粹的差异隐私的界限。此问题的现有算法无论是呈指数运行时间,需要$ \ OMEGA(D ^ {1.5})$样本,或仅满足较弱的集中或近似差分隐私条件。特别地,所有先前的多项式算法都需要$ d ^ {1+ \ omega(1)} $ samples,以保证“加密”高概率,1-2 ^ { - d ^ {\ omega(1) $,虽然我们的算法保留$ \ tilde {o}(d)$ SAMPS复杂性即使在此严格设置中也是如此。我们的主要技术是使用强大的方块方法(SOS)来设计差异私有算法的新方法。算法的证据是在高维算法统计数据中的许多近期作品中的一个关键主题 - 显然需要指数运行时间,但可以通过低度方块证明可以捕获其分析可以自动变成多项式 - 时间算法具有相同的可证明担保。我们展示了私有算法的类似证据现象:工作型指数机制的实例显然需要指数时间,但可以用低度SOS样张分析的指数时间,可以自动转换为多项式差异私有算法。我们证明了捕获这种现象的元定理,我们希望在私人算法设计中广泛使用。我们的技术还在高维度之间绘制了差异私有和强大统计数据之间的新连接。特别是通过我们的校验算法镜头来看,几次研究的SOS证明在近期作品中的算法稳健统计中直接产生了我们差异私有平均估计算法的关键组成部分。
translated by 谷歌翻译
我们在差分隐私(DP)的约束下,用重型数据研究随机凸优化。大多数关于此问题的事先工作仅限于损耗功能是Lipschitz的情况。相反,正如王,肖,德拉达斯和徐\ Cite {wangxdx20}所引入的那样,假设渐变的分布已涉及$ k $ --th时刻,我们研究了一般凸损失功能。我们在集中DP下提供了改善的上限,用于凸起的凸起和强凸损失功能。一路上,我们在纯粹和集中的DP下获得了私人平均估计的私有平均估计的新算法。最后,我们证明了私有随机凸性优化的近乎匹配的下限,具有强凸损失和平均估计,显示纯净和浓缩的DP之间的新分离。
translated by 谷歌翻译
Concentrated differential privacy" was recently introduced by Dwork and Rothblum as a relaxation of differential privacy, which permits sharper analyses of many privacy-preserving computations. We present an alternative formulation of the concept of concentrated differential privacy in terms of the Rényi divergence between the distributions obtained by running an algorithm on neighboring inputs. With this reformulation in hand, we prove sharper quantitative results, establish lower bounds, and raise a few new questions. We also unify this approach with approximate differential privacy by giving an appropriate definition of "approximate concentrated differential privacy."
translated by 谷歌翻译
我们介绍了一个普遍的框架,用于表征差异隐私保证的统计估算问题的统计效率。我们的框架,我们呼叫高维建议 - 试验释放(HPTR),在三个重要组件上建立:指数机制,强大的统计和提议 - 试验释放机制。将所有这些粘在一起是恢复力的概念,这是强大的统计估计的核心。弹性指导算法的设计,灵敏度分析和试验步骤的成功概率分析。关键识别是,如果我们设计了一种仅通过一维鲁棒统计数据访问数据的指数机制,则可以大大减少所产生的本地灵敏度。使用弹性,我们可以提供紧密的本地敏感界限。这些紧张界限在几个案例中容易转化为近乎最佳的实用程序。我们给出了将HPTR应用于统计估计问题的给定实例的一般配方,并在平均估计,线性回归,协方差估计和主成分分析的规范问题上证明了它。我们介绍了一般的公用事业分析技术,证明了HPTR几乎在文献中研究的若干场景下实现了最佳的样本复杂性。
translated by 谷歌翻译
在因果推理和强盗文献中,基于观察数据的线性功能估算线性功能的问题是规范的。我们分析了首先估计治疗效果函数的广泛的两阶段程序,然后使用该数量来估计线性功能。我们证明了此类过程的均方误差上的非反应性上限:这些边界表明,为了获得非反应性最佳程序,应在特定加权$ l^2 $中最大程度地估算治疗效果的误差。 -规范。我们根据该加权规范的约束回归分析了两阶段的程序,并通过匹配非轴突局部局部最小值下限,在有限样品中建立了实例依赖性最优性。这些结果表明,除了取决于渐近效率方差之外,最佳的非质子风险除了取决于样本量支持的最富有函数类别的真实结果函数与其近似类别之间的加权规范距离。
translated by 谷歌翻译
In this work, we give efficient algorithms for privately estimating a Gaussian distribution in both pure and approximate differential privacy (DP) models with optimal dependence on the dimension in the sample complexity. In the pure DP setting, we give an efficient algorithm that estimates an unknown $d$-dimensional Gaussian distribution up to an arbitrary tiny total variation error using $\widetilde{O}(d^2 \log \kappa)$ samples while tolerating a constant fraction of adversarial outliers. Here, $\kappa$ is the condition number of the target covariance matrix. The sample bound matches best non-private estimators in the dependence on the dimension (up to a polylogarithmic factor). We prove a new lower bound on differentially private covariance estimation to show that the dependence on the condition number $\kappa$ in the above sample bound is also tight. Prior to our work, only identifiability results (yielding inefficient super-polynomial time algorithms) were known for the problem. In the approximate DP setting, we give an efficient algorithm to estimate an unknown Gaussian distribution up to an arbitrarily tiny total variation error using $\widetilde{O}(d^2)$ samples while tolerating a constant fraction of adversarial outliers. Prior to our work, all efficient approximate DP algorithms incurred a super-quadratic sample cost or were not outlier-robust. For the special case of mean estimation, our algorithm achieves the optimal sample complexity of $\widetilde O(d)$, improving on a $\widetilde O(d^{1.5})$ bound from prior work. Our pure DP algorithm relies on a recursive private preconditioning subroutine that utilizes the recent work on private mean estimation [Hopkins et al., 2022]. Our approximate DP algorithms are based on a substantial upgrade of the method of stabilizing convex relaxations introduced in [Kothari et al., 2022].
translated by 谷歌翻译
We establish a simple connection between robust and differentially-private algorithms: private mechanisms which perform well with very high probability are automatically robust in the sense that they retain accuracy even if a constant fraction of the samples they receive are adversarially corrupted. Since optimal mechanisms typically achieve these high success probabilities, our results imply that optimal private mechanisms for many basic statistics problems are robust. We investigate the consequences of this observation for both algorithms and computational complexity across different statistical problems. Assuming the Brennan-Bresler secret-leakage planted clique conjecture, we demonstrate a fundamental tradeoff between computational efficiency, privacy leakage, and success probability for sparse mean estimation. Private algorithms which match this tradeoff are not yet known -- we achieve that (up to polylogarithmic factors) in a polynomially-large range of parameters via the Sum-of-Squares method. To establish an information-computation gap for private sparse mean estimation, we also design new (exponential-time) mechanisms using fewer samples than efficient algorithms must use. Finally, we give evidence for privacy-induced information-computation gaps for several other statistics and learning problems, including PAC learning parity functions and estimation of the mean of a multivariate Gaussian.
translated by 谷歌翻译
We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a constant fraction of adversarially-corrupted samples.
translated by 谷歌翻译
我们给出了第一个多项式时间和样本$(\ epsilon,\ delta)$ - 差异私有(DP)算法,以估计存在恒定的对抗性异常分数的平均值,协方差和更高的时刻。我们的算法成功用于分布的分布系列,以便在经济估计上满足两个学习的良好性质:定向时刻的可证明的子销售,以及2度多项式的可证式超分子。我们的恢复保证持有“右仿射效率规范”:Mahalanobis距离的平均值,乘法谱和相对Frobenius距离保证,适用于更高时刻的协方差和注射规范。先前的作品获得了私有稳健算法,用于界限协方差的子静脉分布的平均估计。对于协方差估算,我们的是第一算法(即使在没有异常值的情况下也是在没有任何条件号的假设的情况下成功的。我们的算法从一个新的框架出现,该框架提供了一种用于修改凸面放宽的一般蓝图,以便在算法在其运行中产生正确的正确性的证人,以满足适当的参数规范中的强烈最坏情况稳定性。我们验证了用于修改标准的平方(SOS)SEMIDEFINITE编程放松的担保,以实现鲁棒估算。我们的隐私保障是通过将稳定性保证与新的“估计依赖性”噪声注入机制相结合来获得,其中噪声比例与估计的协方差的特征值。我们认为,此框架更加有用,以获得强大的估算器的DP对应者。独立于我们的工作,Ashtiani和Liaw [Al21]还获得了高斯分布的多项式时间和样本私有鲁棒估计算法。
translated by 谷歌翻译
Hawkes流程最近从机器学习社区中引起了人们对建模事件序列数据的多功能性的越来越多的关注。尽管它们具有丰富的历史可以追溯到几十年前,但其某些属性(例如用于学习参数的样本复杂性和释放差异化私有版本的样本复杂性)尚未得到彻底的分析。在这项工作中,我们研究了具有背景强度$ \ mu $和激发功能$ \ alpha e^{ - \ beta t} $的标准霍克斯进程。我们提供$ \ mu $和$ \ alpha $的非私人和差异私人估计器,并在两种设置中获得样本复杂性结果以量化隐私成本。我们的分析利用了霍克斯过程的强大混合特性和经典的中央限制定理的结果,结果较弱的随机变量。我们在合成数据集和真实数据集上验证了我们的理论发现。
translated by 谷歌翻译
在本文中,我们研究了非平滑凸函数的私人优化问题$ f(x)= \ mathbb {e} _i f_i(x)$ on $ \ mathbb {r}^d $。我们表明,通过将$ \ ell_2^2 $正规器添加到$ f(x)$并从$ \ pi(x)\ propto \ exp(-k(f(x)+\ mu \ \ | | x \ | _2^2/2))$恢复已知的最佳经验风险和$(\ epsilon,\ delta)$ - dp的已知最佳经验风险和人口损失。此外,我们将展示如何使用$ \ widetilde {o}(n \ min(d,n))$ QUERIES $ QUERIES $ f_i(x)$用于DP-SCO,其中$ n $是示例数/用户和$ d $是环境维度。我们还在评估查询的数量上给出了一个(几乎)匹配的下限$ \ widetilde {\ omega}(n \ min(d,n))$。我们的结果利用以下具有独立感兴趣的工具:(1)如果损失函数强烈凸出并且扰动是Lipschitz,则证明指数机制的高斯差异隐私(GDP)。我们的隐私约束是\ emph {optimal},因为它包括高斯机制的隐私性,并使用等仪不等式证明了强烈的对数concove措施。 (2)我们展示如何从$ \ exp(-f(x) - \ mu \ | x \ | |^2_2/2)$ g $ -lipschitz $ f $带有$ \ eta $的总变化中的错误(电视)使用$ \ widetilde {o}((g^2/\ mu)\ log^2(d/\ eta))$无偏查询到$ f(x)$。这是第一个在dimension $ d $和精度$ \ eta $上具有\ emph {polylogarithmic依赖的查询复杂性的采样器。
translated by 谷歌翻译
构建差异私有(DP)估计器需要得出观察结果的最大影响,如果在输入数据或估计器上没有外源性界限,这可能很困难,尤其是在高维度设置中。本文表明,在这方面,统计深度(即半空间深度和回归深度)的标准概念在这方面尤其有利,这在于单个观察值的最大影响很容易分析,并且该值通常很低。这用于使用这两个统计深度概念的最大值来激励新的近似DP位置和回归估计器。还提供了近似DP回归估计器的更高效的变体。此外,为了避免要求用户对估计和/或观察结果指定先验界限,描述了这些DP机制的变体,即满足随机差异隐私(RDP),这是Hall,Wasserman和Wasserman和Wasserman和Wasserman提供的差异隐私的放松Rinaldo(2013)。我们还提供了此处提出的两种DP回归方法的模拟。当样本量至少为100-200或隐私性损失预算足够高时,提出的估计器似乎相对于现有的DP回归方法表现出色。
translated by 谷歌翻译
我们提出了一种基于优化的基于优化的框架,用于计算差异私有M估算器以及构建差分私立置信区的新方法。首先,我们表明稳健的统计数据可以与嘈杂的梯度下降或嘈杂的牛顿方法结合使用,以便分别获得具有全局线性或二次收敛的最佳私人估算。我们在局部强大的凸起和自我协调下建立当地和全球融合保障,表明我们的私人估算变为对非私人M估计的几乎最佳附近的高概率。其次,我们通过构建我们私有M估计的渐近方差的差异私有估算来解决参数化推断的问题。这自然导致近​​似枢轴统计,用于构建置信区并进行假设检测。我们展示了偏置校正的有效性,以提高模拟中的小样本实证性能。我们说明了我们在若干数值例子中的方法的好处。
translated by 谷歌翻译
在共享数据的统计学习和分析中,在联合学习和元学习等平台上越来越广泛地采用,有两个主要问题:隐私和鲁棒性。每个参与的个人都应该能够贡献,而不会担心泄露一个人的敏感信息。与此同时,系统应该在恶意参与者的存在中插入损坏的数据。最近的算法在学习中,学习共享数据专注于这些威胁中的一个,使系统容易受到另一个威胁。我们弥合了这个差距,以获得估计意思的规范问题。样品。我们介绍了素数,这是第一算法,实现了各种分布的隐私和鲁棒性。我们通过新颖的指数时间算法进一步补充了这一结果,提高了素数的样本复杂性,实现了近最优保证并匹配(非鲁棒)私有平均估计的已知下限。这证明没有额外的统计成本同时保证隐私和稳健性。
translated by 谷歌翻译
在这项工作中,我们在用户级差异隐私下研究高维平均值估计,并设计$(\ varepsilon,\ delta)$ - 使用尽可能少的用户差异化私人机制。特别是,即使用户数量低至$ o(\ frac {1} {\ varepsilon } \ log \ frac {1} {\ delta})$。有趣的是,这对\ emph {users}的数量绑定到独立于维度(尽管\ emph {samples aper users}的数量被允许以多项式依赖于尺寸),这与先前需要用户数量的工作数量不同。在多项式上依赖于维度。这解决了Amin等人首先提出的问题。此外,我们的机制可抵抗高达$ 49 \%用户的损坏。最后,我们的结果还适用于与少数用户私下学习离散分布的最佳算法,回答Liu等人的问题,以及更广泛的问题,例如随机凸优化和通过差异化的随机梯度优化和随机梯度下降的变体私人平均估计。
translated by 谷歌翻译
We study the best-arm identification problem in multi-armed bandits with stochastic, potentially private rewards, when the goal is to identify the arm with the highest quantile at a fixed, prescribed level. First, we propose a (non-private) successive elimination algorithm for strictly optimal best-arm identification, we show that our algorithm is $\delta$-PAC and we characterize its sample complexity. Further, we provide a lower bound on the expected number of pulls, showing that the proposed algorithm is essentially optimal up to logarithmic factors. Both upper and lower complexity bounds depend on a special definition of the associated suboptimality gap, designed in particular for the quantile bandit problem, as we show when the gap approaches zero, best-arm identification is impossible. Second, motivated by applications where the rewards are private, we provide a differentially private successive elimination algorithm whose sample complexity is finite even for distributions with infinite support-size, and we characterize its sample complexity. Our algorithms do not require prior knowledge of either the suboptimality gap or other statistical information related to the bandit problem at hand.
translated by 谷歌翻译
差异隐私通常使用比理论更大的隐私参数应用于理想的理想。已经提出了宽大隐私参数的各种非正式理由。在这项工作中,我们考虑了部分差异隐私(DP),该隐私允许以每个属性为基础量化隐私保证。在此框架中,我们研究了几个基本数据分析和学习任务,并设计了其每个属性隐私参数的算法,其较小的人(即所有属性)的最佳隐私参数比最佳的隐私参数。
translated by 谷歌翻译
Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
translated by 谷歌翻译