我们设计了一种算法,用于查找具有强大理论保证其性能的反事实算法。对于任何单调模型$ f:x^d \ to \ {0,1 \} $和instance $ x^\ star $,我们的算法make \ [{s(f))} \ cdot \ log d} \]查询到$ f $并返回{哪个$ f(x')\ ne f(x^\ star)$。这里$ s(f)$是$ f $的灵敏度,lipschitz常数的分散类似物,$ \ delta_f(x^\ star)$是从$ x^\ star $到其最近的反事实的距离。以前最著名的查询复杂性是$ d^{\,o(\ delta_f(x^\ star))} $,可以通过Brute-Force Local Search实现。我们进一步证明了$ s(f)^{\ omega(\ delta_f(x^\ star))} + \ omega(\ log d)$的下限我们的算法本质上是最佳的。
translated by 谷歌翻译