This paper describes important considerations and challenges associated with online reinforcement-learning based waveform selection for target identification in frequency modulated continuous wave (FMCW) automotive radar systems. We present a novel learning approach based on satisficing Thompson sampling, which quickly identifies a waveform expected to yield satisfactory classification performance. We demonstrate through measurement-level simulations that effective waveform selection strategies can be quickly learned, even in cases where the radar must select from a large catalog of candidate waveforms. The radar learns to adaptively select a bandwidth for appropriate resolution and a slow-time unimodular code for interference mitigation in the scene of interest by optimizing an expected classification metric.
translated by 谷歌翻译
When should an online reinforcement learning-based frequency agile cognitive radar be expected to outperform a rule-based adaptive waveform selection strategy? We seek insight regarding this question by examining a dynamic spectrum access scenario, in which the radar wishes to transmit in the widest unoccupied bandwidth during each pulse repetition interval. Online learning is compared to a fixed rule-based sense-and-avoid strategy. We show that given a simple Markov channel model, the problem can be examined analytically for simple cases via stochastic dominance. Additionally, we show that for more realistic channel assumptions, learning-based approaches demonstrate greater ability to generalize. However, for short time-horizon problems that are well-specified, we find that machine learning approaches may perform poorly due to the inherent limitation of convergence time. We draw conclusions as to when learning-based approaches are expected to be beneficial and provide guidelines for future study.
translated by 谷歌翻译
随着Terahertz(THZ)信号产生和辐射方法的最新进展,关节通信和传感应用正在塑造无线系统的未来。为此,预计将在用户设备设备上携带THZ光谱,以识别感兴趣的材料和气态组件。 THZ特异性的信号处理技术应补充这种对THZ感应的重新兴趣,以有效利用THZ频带。在本文中,我们介绍了这些技术的概述,重点是信号预处理(标准的正常差异归一化,最小值 - 最大归一化和Savitzky-Golay滤波),功能提取(主成分分析,部分最小二乘,t,T,T部分,t部分,t部分正方形,T - 分布的随机邻居嵌入和非负矩阵分解)和分类技术(支持向量机器,k-nearest邻居,判别分析和天真的贝叶斯)。我们还通过探索他们在THZ频段的有希望的传感能力来解决深度学习技术的有效性。最后,我们研究了在联合通信和传感的背景下,研究方法的性能和复杂性权衡;我们激励相应的用例,并在该领域提供未来的研究方向。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
低成本毫米波(MMWAVE)通信和雷达设备的商业可用性开始提高消费市场中这种技术的渗透,为第五代(5G)的大规模和致密的部署铺平了道路(5G) - 而且以及6G网络。同时,普遍存在MMWAVE访问将使设备定位和无设备的感测,以前所未有的精度,特别是对于Sub-6 GHz商业级设备。本文使用MMWAVE通信和雷达设备在基于设备的定位和无设备感应中进行了现有技术的调查,重点是室内部署。我们首先概述关于MMWAVE信号传播和系统设计的关键概念。然后,我们提供了MMWaves启用的本地化和感应方法和算法的详细说明。我们考虑了在我们的分析中的几个方面,包括每个工作的主要目标,技术和性能,每个研究是否达到了一定程度的实现,并且该硬件平台用于此目的。我们通过讨论消费者级设备的更好算法,密集部署的数据融合方法以及机器学习方法的受过教育应用是有前途,相关和及时的研究方向的结论。
translated by 谷歌翻译
已经表明(Amuru等人,2015年),可以有效地使用在线学习算法选择最佳的物理层参数,以与数字调制方案进行阻塞,而无需先前了解受害者的传播策略。但是,这个学习问题涉及解决一个可以非常大的混合动作空间的多军匪徒问题。结果,与最佳干扰策略的融合可能会很慢,尤其是当受害者和干扰器的符号不是完全同步时。在这项工作中,我们通过引入线性强盗算法来解决样本效率问题,该算法说明了动作之间固有的相似性。此外,我们提出了上下文特征,这些特征非常适合非连锁处理问题的统计特征,并且与先前的ART相比,表现出明显改善的收敛行为。此外,我们展示了如何将有关受害者传播的先验知识无缝整合到学习框架中。我们最终讨论了渐近状态的局限性。
translated by 谷歌翻译
鉴于无线频谱的有限性和对无线通信最近的技术突破产生的频谱使用不断增加的需求,干扰问题仍在继续持续存在。尽管最近解决干涉问题的进步,但干扰仍然呈现出有效使用频谱的挑战。这部分是由于Wi-Fi的无许可和管理共享乐队使用的升高,长期演进(LTE)未许可(LTE-U),LTE许可辅助访问(LAA),5G NR等机会主义频谱访问解决方案。因此,需要对干扰稳健的有效频谱使用方案的需求从未如此重要。在过去,通过使用避免技术以及非AI缓解方法(例如,自适应滤波器)来解决问题的大多数解决方案。非AI技术的关键缺陷是需要提取或开发信号特征的域专业知识,例如CycrationArity,带宽和干扰信号的调制。最近,研究人员已成功探索了AI / ML的物理(PHY)层技术,尤其是深度学习,可减少或补偿干扰信号,而不是简单地避免它。 ML基于ML的方法的潜在思想是学习来自数据的干扰或干扰特性,从而使需要对抑制干扰的域专业知识进行侧联。在本文中,我们审查了广泛的技术,这些技术已经深入了解抑制干扰。我们为干扰抑制中许多不同类型的深度学习技术提供比较和指导。此外,我们突出了在干扰抑制中成功采用深度学习的挑战和潜在的未来研究方向。
translated by 谷歌翻译
自动驾驶汽车(AV)必须在动态环境中安全有效地操作。为此,配备联合雷达通信(JRC)功能的AVS可以通过使用雷达检测和数据通信功能来增强驾驶安全性。但是,在不确定性和周围环境的动态下,通过两种不同功能优化AV系统的性能非常具有挑战性。在这项工作中,我们首先提出一个基于马尔可夫决策过程(MDP)的智能优化框架,以帮助AV在周围环境的动态和不确定性下选择JRC操作功能时做出最佳决策。然后,我们开发了一种有效的学习算法,利用了深度强化学习技术的最新进展,以找到AV的最佳政策,而无需任何有关周围环境的先前信息。此外,为了使我们提出的框架更加可扩展,我们开发了一种转移学习(TL)机制,该机制使AV能够利用有价值的体验来加速培训过程,以加速培训过程。广泛的模拟表明,与其他常规的深钢筋学习方法相比,提议的可转移深钢筋学习框架可将AV的障碍检测概率降低到67%。
translated by 谷歌翻译
互联网连接系统的指数增长产生了许多挑战,例如频谱短缺问题,需要有效的频谱共享(SS)解决方案。复杂和动态的SS系统可以接触不同的潜在安全性和隐私问题,需要保护机制是自适应,可靠和可扩展的。基于机器学习(ML)的方法经常提议解决这些问题。在本文中,我们对最近的基于ML的SS方法,最关键的安全问题和相应的防御机制提供了全面的调查。特别是,我们详细说明了用于提高SS通信系统的性能的最先进的方法,包括基于ML基于ML的基于的数据库辅助SS网络,ML基于基于的数据库辅助SS网络,包括基于ML的数据库辅助的SS网络,基于ML的LTE-U网络,基于ML的环境反向散射网络和其他基于ML的SS解决方案。我们还从物理层和基于ML算法的相应防御策略的安全问题,包括主要用户仿真(PUE)攻击,频谱感测数据伪造(SSDF)攻击,干扰攻击,窃听攻击和隐私问题。最后,还给出了对ML基于ML的开放挑战的广泛讨论。这种全面的审查旨在为探索新出现的ML的潜力提供越来越复杂的SS及其安全问题,提供基础和促进未来的研究。
translated by 谷歌翻译
社会偏移和温度筛选已被广泛用于抵消Covid-19大流行,从全世界的学术界,工业和公共主管部门引发极大的兴趣。虽然大多数解决方案分别处理了这些方面,但它们的组合将极大地利用对公共空间的持续监测,并有助于触发有效的对策。这项工作介绍了毫米杀虫雷达和红外成像传感系统,在室内空间中进行了不引人注目的和隐私,在室内空间中进行了不显眼和隐私。 Millitrace-IR通过强大的传感器融合方法,MM波雷达和红外热摄像机结合。它通过在热摄像机图像平面和雷达参考系统中的人体运动中共同跟踪受试者的面,实现了偏移和体温的完全自动测量。此外,毫米itrace-IR执行接触跟踪:热相机传感器可靠地检测体温高的人,随后通过雷达以非侵入方式追踪大型室内区域。进入新房间时,通过深神经网络从雷达反射计算与雷达反射的步态相关的特征,并使用加权的极端学习机作为最终重新识别工具,在其他人之间重新识别一个主题。从实际实施中获得的实验结果,从毫米 - IR的实际实施中展示了距离/轨迹估计的排入量级精度,个人间距离估计(对受试者接近0.2米的受试者有效),以及精确的温度监测(最大误差0.5 {\ deg} c)。此外,毫米itrace-IR通过高精度(95%)的人重新识别,在不到20秒内提供接触跟踪。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
由于其不利风格,例如雾,下雨和下雪,汽车MMWVEAVE雷达已广泛用于汽车行业中的广泛应用于汽车行业。另一方面,其大波长也造成了对环境感知的根本挑战。最近的进展对其固有的缺点,即多路径反射和MMWAVE雷达点云的稀疏性取得了突破。然而,MM波信号的较低频率对车辆的移动性比视觉和激光信号的迁移率更敏感。这项工作侧重于频移的问题,即多普勒效应扭曲了雷达测距测量及其对公制定位的影响。我们提出了一种新的基于雷达的公制定位框架,通过恢复多普勒失真来获得更准确的位置估计。具体而言,我们首先设计一种新算法,明确地补偿了雷达扫描的多普勒失真,然后模拟了多普勒补偿点云的测量不确定性,以进一步优化度量定位。使用公共NUSCENES数据集和CARLA模拟器的广泛实验表明,我们的方法分别以19.2 \%和13.5 \%的改进优于最先进的方法,分别在翻译和旋转误差方面的改进。
translated by 谷歌翻译
主动位置估计(APE)是使用一个或多个传感平台本地化一个或多个目标的任务。 APE是搜索和拯救任务,野生动物监测,源期限估计和协作移动机器人的关键任务。 APE的成功取决于传感平台的合作水平,他们的数量,他们的自由度和收集的信息的质量。 APE控制法通过满足纯粹剥削或纯粹探索性标准,可以实现主动感测。前者最大限度地减少了位置估计的不确定性;虽然后者驱动了更接近其任务完成的平台。在本文中,我们定义了系统地分类的主要元素,并批判地讨论该域中的最新状态。我们还提出了一个参考框架作为对截图相关的解决方案的形式主义。总体而言,本调查探讨了主要挑战,并设想了本地化任务的自主感知系统领域的主要研究方向。促进用于搜索和跟踪应用的强大主动感测方法的开发也有益。
translated by 谷歌翻译
安装在微空中车辆(MAV)上的地面穿透雷达是有助于协助人道主义陆地间隙的工具。然而,合成孔径雷达图像的质量取决于雷达天线的准确和精确运动估计以及与MAV产生信息性的观点。本文介绍了一个完整的自动空气缩进的合成孔径雷达(GPSAR)系统。该系统由空间校准和时间上同步的工业级传感器套件组成,使得在地面上方,雷达成像和光学成像。自定义任务规划框架允许在地上控制地上的Stripmap和圆形(GPSAR)轨迹的生成和自动执行,以及空中成像调查飞行。基于因子图基于Dual接收机实时运动(RTK)全局导航卫星系统(GNSS)和惯性测量单元(IMU)的测量值,以获得精确,高速平台位置和方向。地面真理实验表明,传感器时机为0.8美元,正如0.1美元的那样,定位率为1 kHz。与具有不确定标题初始化的单个位置因子相比,双位置因子配方可提高高达40%,批量定位精度高达59%。我们的现场试验验证了本地化准确性和精度,使得能够相干雷达测量和检测在沙子中埋入的雷达目标。这验证了作为鸟瞰着地图检测系统的潜力。
translated by 谷歌翻译
In this article we present SHARP, an original approach for obtaining human activity recognition (HAR) through the use of commercial IEEE 802.11 (Wi-Fi) devices. SHARP grants the possibility to discern the activities of different persons, across different time-spans and environments. To achieve this, we devise a new technique to clean and process the channel frequency response (CFR) phase of the Wi-Fi channel, obtaining an estimate of the Doppler shift at a radio monitor device. The Doppler shift reveals the presence of moving scatterers in the environment, while not being affected by (environment-specific) static objects. SHARP is trained on data collected as a person performs seven different activities in a single environment. It is then tested on different setups, to assess its performance as the person, the day and/or the environment change with respect to those considered at training time. In the worst-case scenario, it reaches an average accuracy higher than 95%, validating the effectiveness of the extracted Doppler information, used in conjunction with a learning algorithm based on a neural network, in recognizing human activities in a subject and environment independent way. The collected CFR dataset and the code are publicly available for replicability and benchmarking purposes.
translated by 谷歌翻译
我们研究了基于自主驾驶环境中的毫米波(MMW)雷达的目标跟踪算法。针对在目标跟踪阶段中的簇匹配,提出了一种新的加权特征相似性算法,其在强的环境噪声和多个干扰目标下增加了相邻帧中的相同目标的匹配速率。对于自动驾驶场景,我们构建了一种方法,该方法利用其运动参数来提取和校正移动目标的轨迹,这解决了车辆运动期间移动目标检测和轨迹校正的问题。最后,通过自动驾驶环境中的一系列实验验证了所提出的方法的可行性。结果验证了该方法的高识别精度和低位置误差。
translated by 谷歌翻译
雷达传感器逐渐成为道路车辆的广泛设备,在自主驾驶和道路安全中发挥着至关重要的作用。广泛采用雷达传感器增加了不同车辆的传感器之间干扰的可能性,产生损坏的范围曲线和范围 - 多普勒地图。为了从范围 - 多普勒地图中提取多个目标的距离和速度,需要减轻影响每个范围分布的干扰。本文提出了一种全卷积神经网络,用于汽车雷达干扰缓解。为了在真实的方案中培训我们的网络,我们介绍了具有多个目标和多个干扰的新数据集的现实汽车雷达信号。为了我们的知识,我们是第一个在汽车雷达领域施加体重修剪的施加量,与广泛使用的辍学相比获得了优越的结果。虽然最先前的作品成功地估计了汽车雷达信号的大小,但我们提出了一种可以准确估计相位的深度学习模型。例如,我们的新方法将相对于普通采用的归零技术的相位估计误差从12.55度到6.58度降低了一半。考虑到缺乏汽车雷达干扰缓解数据库,我们将释放开源我们的大规模数据集,密切复制了多次干扰案例的现实世界汽车场景,允许其他人客观地比较他们在该域中的未来工作。我们的数据集可用于下载:http://github.com/ristea/arim-v2。
translated by 谷歌翻译
神经形态计算是一项新兴技术,可为需要有效的在线推理和/或控制的应用程序提供以事件为导向的数据处理。最近的工作引入了神经形态通信的概念,在该概念中,神经形态计算与Impulse Radio(IR)传输集成在一起,以实现无线物联网网络中的低能量和低延迟远程推断。在本文中,我们介绍了神经形态综合传感和通信(N-ISAC),这是一种新的解决方案,可实现有效的在线数据解码和雷达传感。 N-ISAC利用了一个常见的IR波形,以传达数字信息并检测存在或不存在雷达靶标的双重目的。在接收方部署了尖峰神经网络(SNN),以解码数字数据并使用接收的信号检测雷达目标。通过平衡数据通信和雷达传感的性能指标,突出了两个应用程序之间的协同作用和权衡,可以优化SNN操作。
translated by 谷歌翻译
检测有害的携带物体在智能监控系统中起着关键作用,例如,在机场安全中具有广泛的应用。在本文中,我们专注于使用低成本77GHz MMWVEAVE雷达的相对未开发的区域,用于携带物体检测问题。该建议的系统能够实时检测三类对象 - 笔记本电脑,手机和刀具 - 在开放的携带和隐藏的情况下,物体隐藏着衣服或袋子。这种能力是通过用于定位的初始信号处理来实现的,用于定位和生成范围 - 方位角升降图像立方体,然后是基于深度学习的预测网络和用于检测对象的多枪后处理模块。用于验证检测开放携带和隐藏物体的系统性能的广泛实验已经提出了一种自制雷达相机测试用和数据集。此外,分析了不同输入,因素和参数对系统性能的影响,为系统提供了直观的理解。该系统是旨在使用77GHz雷达检测携带物体的其他未来作品的第一个基线。
translated by 谷歌翻译
迄今为止,通信系统主要旨在可靠地交流位序列。这种方法提供了有效的工程设计,这些设计对消息的含义或消息交换所旨在实现的目标不可知。但是,下一代系统可以通过将消息语义和沟通目标折叠到其设计中来丰富。此外,可以使这些系统了解进行交流交流的环境,从而为新颖的设计见解提供途径。本教程总结了迄今为止的努力,从早期改编,语义意识和以任务为导向的通信开始,涵盖了基础,算法和潜在的实现。重点是利用信息理论提供基础的方法,以及学习在语义和任务感知通信中的重要作用。
translated by 谷歌翻译