通过具有资源约束设备的无线网络部署联合学习(FL)需要平衡精度,能量效率和精度之间。现有技术在FL上经常需要设备使用32位精度级别来培训深神经网络(DNN)以进行数据表示以提高精度。然而,由于DNN可能需要执行数百万运算,因此这些算法对于资源受限设备来说是不切实际的。因此,培训具有高精度水平的DNN,对FL的高能量成本引起。在本文中,提出了一种量化的FL框架,其表示在本地训练和上行链路传输中具有有限精度的有限精度的数据。这里,通过使用量化的神经网络(QNN)以固定精度格式量化的量化神经网络(QNN)来捕获有限的精度。在所考虑的流域中,每个设备列举其QNN并将量化的训练结果传输到基站。用于本地训练的能源模型和具有量化的传输经过严格导出。在确保收敛的同时,相对于精度的水平配制了能量最小化问题。为了解决问题,我们首先分析了流量收敛速度并使用了线路搜索方法。仿真结果表明,与标准FL模型相比,我们的FL框架可以将能耗降低至53%。结果在无线网络上的精度,能量和准确性之间的权衡之间还阐明了借调。
translated by 谷歌翻译
在本文中,提出了一个绿色,量化的FL框架,该框架在本地培训和上行链路传输中代表具有有限精度水平的数据。在这里,有限的精度级别是通过使用量化的神经网络(QNN)来捕获的,该神经网络(QNN)以固定精确格式量化权重和激活。在考虑的FL模型中,每个设备训练其QNN并将量化的训练结果传输到基站。严格得出了局部训练和传输的能量模型。为了同时最大程度地减少能耗和交流的数量,相对于本地迭代的数量,选定设备的数量以及本地培训和传输的精确级别,在确保融合的同时,提出了多目标优化问题目标准确性约束。为了解决此问题,相对于系统控制变量,分析得出所提出的FL系统的收敛速率。然后,该问题的帕累托边界被表征为使用正常边界检查方法提供有效的解决方案。通过使用NASH讨价还价解决方案并分析派生的收敛速率,从两个目标之间平衡了两种目标之间的权衡的洞察力。仿真结果表明,与代表完全精确的数据相比,提出的FL框架可以减少能源消耗,直到收敛高达52%。
translated by 谷歌翻译
联合学习(FL)使移动设备能够在保留本地数据的同时协作学习共享的预测模型。但是,实际上在移动设备上部署FL存在两个主要的研究挑战:(i)频繁的无线梯度更新v.s.频谱资源有限,以及(ii)培训期间渴望的FL通信和本地计算V.S.电池约束的移动设备。为了应对这些挑战,在本文中,我们提出了一种新型的多位空天空计算(MAIRCOMP)方法,用于FL中本地模型更新的频谱有效聚合,并进一步介绍用于移动的能源有效的FL设计设备。具体而言,高精度数字调制方案是在MAIRCOMP中设计和合并的,允许移动设备同时在多访问通道中同时在所选位置上传模型更新。此外,我们理论上分析了FL算法的收敛性。在FL收敛分析的指导下,我们制定了联合传输概率和局部计算控制优化,旨在最大程度地减少FL移动设备的总体能源消耗(即迭代局部计算 +多轮通信)。广泛的仿真结果表明,我们提出的方案在频谱利用率,能源效率和学习准确性方面优于现有计划。
translated by 谷歌翻译
本文考虑通过模型量化提高联邦学习(FL)的无线通信和计算效率。在提出的Bitwidth FL方案中,Edge设备将其本地FL模型参数的量化版本训练并传输到协调服务器,从而将它们汇总为量化的全局模型并同步设备。目的是共同确定用于本地FL模型量化的位宽度以及每次迭代中参与FL训练的设备集。该问题被视为一个优化问题,其目标是在每卷工具采样预算和延迟要求下最大程度地减少量化FL的训练损失。为了得出解决方案,进行分析表征,以显示有限的无线资源和诱导的量化误差如何影响所提出的FL方法的性能。分析结果表明,两个连续迭代之间的FL训练损失的改善取决于设备的选择和量化方案以及所学模型固有的几个参数。给定基于线性回归的这些模型属性的估计值,可以证明FL训练过程可以描述为马尔可夫决策过程(MDP),然后提出了基于模型的增强学习(RL)方法来优化动作的方法选择迭代。与无模型RL相比,这种基于模型的RL方法利用FL训练过程的派生数学表征来发现有效的设备选择和量化方案,而无需强加其他设备通信开销。仿真结果表明,与模型无RL方法和标准FL方法相比,提出的FL算法可以减少29%和63%的收敛时间。
translated by 谷歌翻译
联合学习(FL)使移动边缘计算(MEC)中的设备能够在不上载本地数据的情况下协作培训共享模型。可以应用梯度压缩来缓解通信开销,但随着梯度压缩的流动仍然面临着巨大的挑战。为了部署绿色MEC,我们提出了Fedgreen,它通过细粒度梯度压缩增强了原始流体,以有效控制设备的总能耗。具体地,我们介绍了相关的操作,包括设备侧梯度减少和服务器侧元素 - 明智的聚合,以便于FL中的梯度压缩。根据公共数据集,我们研究了压缩的本地梯度对不同压缩比的贡献。之后,我们制定和解决学习精度 - 能效概率问题,其中为每个设备导出最佳压缩比和计算频率。实验结果表明,与基线方案相比,鉴于80%的测试精度要求,FedGreen减少了装置总能耗的至少32%。
translated by 谷歌翻译
联合学习(FL)能够通过定期聚合培训的本地参数来在多个边缘用户执行大的分布式机器学习任务。为了解决在无线迷雾云系统上实现支持的关键挑战(例如,非IID数据,用户异质性),我们首先基于联合平均(称为FedFog)的高效流行算法来执行梯度参数的本地聚合在云端的FOG服务器和全球培训更新。接下来,我们通过调查新的网络知识的流动系统,在无线雾云系统中雇用FEDFog,这促使了全局损失和完成时间之间的平衡。然后开发了一种迭代算法以获得系统性能的精确测量,这有助于设计有效的停止标准以输出适当数量的全局轮次。为了缓解级体效果,我们提出了一种灵活的用户聚合策略,可以先培训快速用户在允许慢速用户加入全局培训更新之前获得一定程度的准确性。提供了使用若干现实世界流行任务的广泛数值结果来验证FEDFOG的理论融合。我们还表明,拟议的FL和通信的共同设计对于在实现学习模型的可比准确性的同时,基本上提高资源利用是必要的。
translated by 谷歌翻译
联邦元学习(FML)已成为应对当今边缘学习竞技场中的数据限制和异质性挑战的承诺范式。然而,其性能通常受到缓慢的收敛性和相应的低通信效率的限制。此外,由于可用的无线电频谱和物联网设备的能量容量通常不足,因此在在实际无线网络中部署FML时,控制资源分配和能量消耗是至关重要的。为了克服挑战,在本文中,我们严格地分析了每个设备对每轮全球损失减少的贡献,并使用非统一的设备选择方案开发FML算法(称为Nufm)以加速收敛。之后,我们制定了集成NuFM在多通道无线系统中的资源分配问题,共同提高收敛速率并最小化壁钟时间以及能量成本。通过逐步解构原始问题,我们设计了一个联合设备选择和资源分配策略,以解决理论保证问题。此外,我们表明Nufm的计算复杂性可以通过$ O(d ^ 2)$至$ o(d)$(使用模型维度$ d $)通过组合两个一阶近似技术来降低。广泛的仿真结果表明,与现有基线相比,所提出的方法的有效性和优越性。
translated by 谷歌翻译
通过增加无线设备的计算能力,以及用户和设备生成的数据的前所未有的级别,已经出现了新的分布式机器学习(ML)方法。在无线社区中,由于其通信效率及其处理非IID数据问题的能力,联邦学习(FL)特别有趣。可以通过称为空中计算(AIRCOMP)的无线通信方法加速FL训练,其利用同时上行链路传输的干扰以有效地聚合模型更新。但是,由于Aircomp利用模拟通信,因此它引入了不可避免的估计错误。在本文中,我们研究了这种估计误差对FL的收敛性的影响,并提出了一种改进资源受限无线网络的方法的转移。首先,我们通过静态通道重新传输获得最佳Aircomp电源控制方案。然后,我们调查了传递的空中流体的性能,并在流失函数上找到两个上限。最后,我们提出了一种选择最佳重传的启发式,可以在训练ML模型之前计算。数值结果表明,引入重传可能导致ML性能提高,而不会在通信或计算方面产生额外的成本。此外,我们为我们的启发式提供了模拟结果,表明它可以正确地确定不同无线网络设置和机器学习问题的最佳重传次数。
translated by 谷歌翻译
有限的通信资源,例如带宽和能源以及设备之间的数据异质性是联合学习的两个主要瓶颈(FL)。为了应对这些挑战,我们首先使用部分模型聚合(PMA)设计了一个新颖的FL框架,该框架仅汇总负责特征提取的神经网络的下层,而与复杂模式识别相对应的上层仍保留在个性化设备上。提出的PMA-FL能够解决数据异质性并减少无线通道中的传输信息。然后,我们在非convex损耗函数设置下获得了框架的收敛结合。借助此界限,我们定义了一个新的目标函数,名为“计划数据样本量”,以将原始的不明智优化问题转移到可用于设备调度,带宽分配,计算和通信时间分配的可拖动问题中。我们的分析表明,当PMA-FL的沟通和计算部分具有相同的功率时,可以实现最佳时段。我们还开发了一种二级方法来解决最佳带宽分配策略,并使用SET扩展算法来解决最佳设备调度。与最先进的基准测试相比,提议的PMA-FL在两个典型的异质数据集(即Minist和CIFAR-10)上提高了2.72%和11.6%的精度。此外,提出的联合动态设备调度和资源优化方法的精度比考虑的基准略高,但它们提供了令人满意的能量和时间缩短:MNIST的29%能量或20%的时间缩短; CIFAR-10的能量和25%的能量或12.5%的时间缩短。
translated by 谷歌翻译
用于联合学习(FL)的最佳算法设计仍然是一个打开的问题。本文探讨了实用边缘计算系统中FL的全部潜力,其中工人可能具有不同的计算和通信功能,并且在服务器和工人之间发送量化的中间模型更新。首先,我们介绍了FL,即GenQSGD的一般量化并行迷你批量随机梯度下降(SGD)算法,即GenQSGD,其由全球迭代的数量参数化,所有工人的本地迭代的数量以及迷你批量大小。我们还分析了其算法参数的任何选择的收敛误差。然后,我们优化算法参数,以最小化时间约束和收敛误差约束下的能量成本。优化问题是具有非可分辨率约束函数的具有挑战性的非凸面问题。我们提出了一种迭代算法,可以使用高级优化技术获得KKT点。数值结果证明了现有的GenQSGD的显着增益,并揭示了最佳设计的重要性FL算法。
translated by 谷歌翻译
在本章中,我们将主要关注跨无线设备的协作培训。培训ML模型相当于解决优化问题,并且在过去几十年中已经开发了许多分布式优化算法。这些分布式ML算法提供数据局部性;也就是说,可以协同地培训联合模型,而每个参与设备的数据仍然是本地的数据。这个地址,一些延伸,隐私问题。它们还提供计算可扩展性,因为它们允许利用分布在许多边缘设备的计算资源。然而,在实践中,这不会直接导致整体学习速度的线性增益与设备的数量。这部分是由于通信瓶颈限制了整体计算速度。另外,无线设备在其计算能力中具有高度异构,并且它们的计算速度和通信速率都可能由于物理因素而高度变化。因此,考虑到时变通信网络的影响以及器件的异构和随机计算能力,必须仔细设计分布式学习算法,特别是在无线网络边缘实现的算法。
translated by 谷歌翻译
用于解决具有量化消息传递的实际边缘计算系统中的一般机器学习(ML)问题的联邦学习(FL)算法的最佳设计仍然是一个打开问题。本文考虑了服务器和工人在发送消息之前具有不同的计算和通信能力以及使用量化的优势计算系统。为了探讨这种优势计算系统中的FL的全部潜力,我们首先介绍一般的FL算法,即GenQSGD,由全局和局部迭代,迷你批量大小和步骤尺寸序列参数化。然后,我们分析其对任意步长序列的融合,并指定三个常用的步大规则下的收敛结果,即常数,指数和递减的步长规则。接下来,我们优化算法参数,以最小化时间约束和收敛误差约束下的能量成本,重点是FL的整体实施过程。具体地,对于在每个考虑的步长规则下的任何给定的步骤尺寸序列,我们优化全局和本地迭代和迷你批量大小的数量,以最佳地实现具有预设步长序列的应用程序的FL。我们还优化了步骤序列以及这些算法参数,以探索FL的全部潜力。由此产生的优化问题是具有非可分性约束函数的非凸面问题。我们提出了使用通用内近似(GIA)的迭代算法来获得KKT点和用于解决互补几何编程(CGP)的技巧。最后,我们用现有的FL算法用优化的算法参数进行了数值展示了GenQSGD的显着收益,并揭示了最佳地设计了一般FL算法的重要性。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
在本文中,我们研究了多服务器边缘计算中基于区块链的联合学习(BFL)的新延迟优化问题。在此系统模型中,分布式移动设备(MDS)与一组Edge服务器(ESS)通信,以同时处理机器学习(ML)模型培训和阻止开采。为了协助ML模型培训用于资源受限的MD,我们制定了一种卸载策略,使MD可以将其数据传输到相关的ESS之一。然后,我们基于共识机制在边缘层上提出了一个新的分散的ML模型聚合解决方案,以通过基于对等(P2P)基于基于的区块链通信构建全局ML模型。区块链在MDS和ESS之间建立信任,以促进可靠的ML模型共享和合作共识形成,并能够快速消除由中毒攻击引起的操纵模型。我们将延迟感知的BFL作为优化,旨在通过联合考虑数据卸载决策,MDS的传输功率,MDS数据卸载,MDS的计算分配和哈希功率分配来最大程度地减少系统延迟。鉴于离散卸载和连续分配变量的混合作用空间,我们提出了一种具有参数化优势演员评论家算法的新型深度强化学习方案。从理论上讲,我们根据聚合延迟,迷你批量大小和P2P通信回合的数量来表征BFL的收敛属性。我们的数值评估证明了我们所提出的方案优于基线,从模型训练效率,收敛速度,系统潜伏期和对模型中毒攻击的鲁棒性方面。
translated by 谷歌翻译
联合学习(FL)最近被揭示为有希望的技术,以便在网络边缘启用人工智能(AI),其中分布式移动设备在边缘服务器的协调下协同培训共享AI模型。为了显着提高FL的通信效率,通过利用无线多接入信道的叠加特性,遍布空中计算允许大量的移动设备通过利用无线多接入信道的叠加特性同时上传其本地模型。由于无线信道衰落,边缘服务器的模型聚合误差由所有设备中最弱的通道主导,导致严重的孤立问题。在本文中,我们提出了一种继电器协助的合作液计划,以有效地解决了斯塔格勒问题。特别是,我们部署了多个半双工继电器以协同协作在将本地模型更新上载到边缘服务器时的设备。空中计算的性质构成了与传统继电器通信系统中不同的系统目标和约束。此外,设计变量之间的强耦合使得这种系统具有挑战性的优化。为了解决问题,我们提出了一种基于交替优化的算法来优化收发器和中继操作,具有低复杂度。然后,我们在单个中继盒中分析模型聚合误差,并显示我们的继电器辅助方案实现比没有继电器的中继的误差较小的误差。该分析提供了对协同媒体实施中的继电器部署的关键见解。广泛的数值结果表明,与最先进的方案相比,我们的设计达到了更快的融合。
translated by 谷歌翻译
在本文中,研究了无线网络的联合学习(FL)。在每个通信回合中,选择一部分设备以有限的时间和能量参与聚合。为了最大程度地减少收敛时间,在基于Stackelberg游戏的框架中共同考虑了全球损失和延迟。具体而言,在Leader级别上,将基于信息的设备选择(AOI)选择为全球损失最小化问题,而子渠道分配,计算资源分配和功率分配在追随者级别被视为延迟最小化问题。通过将追随者级别的问题分为两个子问题,追随者的最佳响应是通过基于单调优化的资源分配算法和基于匹配的子渠道分配算法获得的。通过得出收敛速率的上限,重新制定了领导者级别的问题,然后提出了基于列表的设备选择算法来实现Stackelberg平衡。仿真结果表明,所提出的设备选择方案在全球损失方面优于其他方案,而开发的算法可以显着降低计算和通信的时间消耗。
translated by 谷歌翻译
预计未来的无线网络将支持各种移动服务,包括人工智能(AI)服务和无处不在的数据传输。联合学习(FL)作为一种革命性的学习方法,可以跨分布式移动边缘设备进行协作AI模型培训。通过利用多访问通道的叠加属性,无线计算允许同时通过同一无线电资源从大型设备上传,因此大大降低了FL的通信成本。在本文中,我们研究了移动边缘网络中的无线信息和传统信息传输(IT)的共存。我们提出了一个共存的联合学习和信息传输(CFLIT)通信框架,其中FL和IT设备在OFDM系统中共享无线频谱。在此框架下,我们旨在通过优化长期无线电资源分配来最大化IT数据速率并确保给定的FL收敛性能。限制共存系统频谱效率的主要挑战在于,由于服务器和边缘设备之间的频繁通信以进行FL模型聚合,因此发生的大开销。为了应对挑战,我们严格地分析了计算与通信比对无线褪色通道中无线FL融合的影响。该分析揭示了存在最佳计算与通信比率的存在,该比率最大程度地降低了空中FL所需的无线电资源量,以收敛到给定的错误公差。基于分析,我们提出了一种低复杂性在线算法,以共同优化FL设备和IT设备的无线电资源分配。广泛的数值模拟验证了FL和IT设备在无线蜂窝系统中共存的拟议设计的出色性能。
translated by 谷歌翻译
代表低精度的深度神经网络(DNN)是一种有希望的方法来实现有效的加速和记忆力。以前的方法在低精度中培训DNN的方法通常在重量更新期间在高精度中保持重量的重量副本。由于低精度数字系统与学习算法之间的复杂相互作用,直接具有低精度重量的培训导致精度下降。为了解决这个问题,我们开发了一个共同设计的低精度训练框架,被称为LNS-MADAM,我们共同设计了对数号系统(LNS)和乘法权重算法(MADAM)。我们证明了LNS-MADAM在重量更新期间导致低量化误差,即使精度有限,也导致稳定的收敛。我们进一步提出了LNS-MADAM的硬件设计,可以解决实现LNS计算的有效数据路径的实际挑战。我们的实现有效地降低了LNS - 整数转换和部分总和累积所产生的能量开销。实验结果表明,LNS-MADAM为全精密对应物达到了可比的准确性,只有8位对流行的计算机视觉和自然语言任务。与全精密浮点实施相比,LNS-MADAM将能耗降低超过90。
translated by 谷歌翻译
Federated Learning (FL) is a collaborative machine learning (ML) framework that combines on-device training and server-based aggregation to train a common ML model among distributed agents. In this work, we propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems. Considering limited wireless communication resources, we investigate the effect of different scheduling policies and aggregation designs on the convergence performance. Driven by the importance of reducing the bias and variance of the aggregated model updates, we propose a scheduling policy that jointly considers the channel quality and training data representation of user devices. The effectiveness of our channel-aware data-importance-based scheduling policy, compared with state-of-the-art methods proposed for synchronous FL, is validated through simulations. Moreover, we show that an "age-aware" aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
translated by 谷歌翻译
Federated learning (FL) has achieved great success as a privacy-preserving distributed training paradigm, where many edge devices collaboratively train a machine learning model by sharing the model updates instead of the raw data with a server. However, the heterogeneous computational and communication resources of edge devices give rise to stragglers that significantly decelerate the training process. To mitigate this issue, we propose a novel FL framework named stochastic coded federated learning (SCFL) that leverages coded computing techniques. In SCFL, before the training process starts, each edge device uploads a privacy-preserving coded dataset to the server, which is generated by adding Gaussian noise to the projected local dataset. During training, the server computes gradients on the global coded dataset to compensate for the missing model updates of the straggling devices. We design a gradient aggregation scheme to ensure that the aggregated model update is an unbiased estimate of the desired global update. Moreover, this aggregation scheme enables periodical model averaging to improve the training efficiency. We characterize the tradeoff between the convergence performance and privacy guarantee of SCFL. In particular, a more noisy coded dataset provides stronger privacy protection for edge devices but results in learning performance degradation. We further develop a contract-based incentive mechanism to coordinate such a conflict. The simulation results show that SCFL learns a better model within the given time and achieves a better privacy-performance tradeoff than the baseline methods. In addition, the proposed incentive mechanism grants better training performance than the conventional Stackelberg game approach.
translated by 谷歌翻译