研究了图像质量降解对自动指纹识别验证性能的影响。我们在不同的指纹图像质量下研究了基于细节和脊信息的两个指纹匹配器的性能。发现基于山脊的系统比基于小小的图像质量标准的基于细节的系统更适合图像质量降解。
translated by 谷歌翻译
指纹图像质量会严重影响指纹识别系统的性能。本文回顾了指纹图像质量计算的现有方法。我们还使用MCYT数据库(包括9000个指纹图像)实施,测试和比较了其中的选择。实验结果表明,大多数算法的行为类似。
translated by 谷歌翻译
指纹验证中的一个开放问题是对图像质量退化的鲁棒性缺乏鲁棒性。质量差的图像导致虚假且缺失的功能,从而降低整体系统的性能。因此,对于指纹识别系统非常重要,以估计捕获的指纹图像的质量和有效性。在这项工作中,我们审查了现有的指纹图像质量估算方法,包括发表措施背后的理由,以及在不同质量条件下显示其行为的视觉示例。我们还测试了一系列指纹图像质量估计算法。对于实验,我们雇用BioSec多模态基线语料库,其中包括在两个与三个不同传感器中获取的200个个人的19200个指纹图像。比较所选质量措施的行为,在大多数情况下显示它们之间的高相关性。还研究了低质量样本在验证性能中的影响,也是广泛可用的小型指纹匹配系统。
translated by 谷歌翻译
提出了基于质量度量的LIVISE检测的新指纹参数化。新颖的功能集用于完整的LIVESTECTY检测系统中,并在Livdet竞争的开发集中进行了测试,其中包括具有三个不同光学传感器的4,500多个真实图像和假图像。提出的解决方案证明对多传感器方案是可靠的,并且总体率是正确分类的样品的93%。此外,提出的LIVISE检测方法比先前研究的技术具有额外的优势,即仅需要一个图像从手指决定是真实还是假货。
translated by 谷歌翻译
We report on experiments for the fingerprint modality conducted during the First BioSecure Residential Workshop. Two reference systems for fingerprint verification have been tested together with two additional non-reference systems. These systems follow different approaches of fingerprint processing and are discussed in detail. Fusion experiments I volving different combinations of the available systems are presented. The experimental results show that the best recognition strategy involves both minutiae-based and correlation-based measurements. Regarding the fusion experiments, the best relative improvement is obtained when fusing systems that are based on heterogeneous strategies for feature extraction and/or matching. The best combinations of two/three/four systems always include the best individual systems whereas the best verification performance is obtained when combining all the available systems.
translated by 谷歌翻译
提出了一种使用基于质量相关特征的新颖的指纹参数化的新的基于软件的活性检测方法。该系统在高度挑战的数据库上测试,该数据库包括超过10,500个实际和假图像,其中包含不同技术的五个传感器,并在材料和程序中覆盖各种直接攻击情景,然后遵循生成胶状手指。所提出的解决方案证明对多场景数据集具有强大,并呈现90%正确分类的样本的总速率。此外,所呈现的活性检测方法具有上述从手指中仅需要一个图像的先前研究的技术的额外优点,以决定它是真实还是假的。最后一个特征提供了具有非常有价值的功能的方法,因为它使其更不具有侵入性,更多的用户友好,更快,并降低其实现成本。
translated by 谷歌翻译
The vulnerabilities of fingerprint-based recognition systems to direct attacks with and without the cooperation of the user are studied. Two different systems, one minutiae-based and one ridge feature-based, are evaluated on a database of real and fake fingerprints. Based on the fingerprint images quality and on the results achieved on different operational scenarios, we obtain a number of statistically significant observations regarding the robustness of the systems.
translated by 谷歌翻译
提出了一种生成软糖手指的新方法。描述了一个中型的假指纹数据库,并在其上评估了两个不同的指纹验证系统。实验中考虑了三种不同的情况,即:使用真实的指纹注册和测试,用假指纹进行注册和测试,以及带有真实指纹的注册,并用假指纹进行测试。给出了光学和热扫描传感器的结果。两种系统都被证明容易受到直接攻击。
translated by 谷歌翻译
生物识别技术在过去十年中越来越多地部署,比传统的个人认可方法提供更大的安全性和便利性。虽然生物识别信号的质量严重影响生物识别系统的性能,但在评估质量的先验研究中有限。质量是安全的关键问题,特别是在涉及监视摄像机,取证,便携式设备或通过互联网远程访问的不利情景。本文分析了对生物识别质量产生负面影响的因素,如何克服它们,以及如何将质量措施纳入生物识别系统。在这些问题中对本领域的审查提供了一种对生物识别质量挑战的整体框架。
translated by 谷歌翻译
指纹证据在识别个人的刑事调查中起着重要作用。尽管已经提出了各种指纹分类和特征提取的技术,但指纹的自动指纹识别仍处于最早的阶段。传统\ textIt {自动指纹识别系统}(AFIS)的性能取决于有效的小小的点,并且仍然需要人类的专家协助在功能提取和识别阶段。基于这种动机,我们提出了一种基于生成对抗网络和一声学习技术(FIGO)的指纹识别方法。我们的解决方案包含两个组件:指纹增强层和指纹识别层。首先,我们提出了一个PIX2PIX模型,将低质量的指纹图像转换为直接在指纹增强层中的Pixel的高水平的指纹图像像素。通过提出的增强算法,指纹识别模型的性能得到了显着提高。此外,我们通过观察指纹设备的识别精度来开发基于Gabor过滤器的另一种现有解决方案,作为与建议模型进行比较的基准。实验结果表明,我们提出的PIX2PIX模型比指纹识别的基线方法具有更好的支持。其次,我们使用单次学习方法在指纹识别过程中构建一个完全自动化的指纹特征提取模型。两个具有共享权重和参数的双卷积神经网络(CNN)用于在此过程中获得特征向量。使用提出的方法,我们证明只能以高精度从一个培训样本中学习必要的信息。
translated by 谷歌翻译
我们提出了一种质量感知的多模式识别框架,其将来自多个生物特征的表示与不同的质量和样本数量相结合,以通过基于样本的质量提取互补识别信息来实现增加的识别准确性。我们通过使用以弱监督时尚估计的质量分数加权,为融合输入方式的质量意识框架,以融合输入方式的融合。此框架利用两个融合块,每个融合块由一组质量感知和聚合网络表示。除了架构修改外,我们还提出了两种特定于任务特定的损耗功能:多模式可分离性损失和多模式紧凑性损失。第一个损失确保了类的模态的表示具有可比的大小来提供更好的质量估计,而不同类别的多式数代表分布以实现嵌入空间中的最大判别。第二次丢失,被认为是正规化网络权重,通过规范框架来提高泛化性能。我们通过考虑由面部,虹膜和指纹方式组成的三个多模式数据集来评估性能。通过与最先进的算法进行比较来证明框架的功效。特别是,我们的框架优于BioMdata的模式的级别和得分级别融合超过30%以获得$ 10 ^ { - 4} $ 10 ^ { - 4} $的真正验收率。
translated by 谷歌翻译
已经广泛地研究了使用虹膜和围眼区域作为生物特征,主要是由于虹膜特征的奇异性以及当图像分辨率不足以提取虹膜信息时的奇异区域的使用。除了提供有关个人身份的信息外,还可以探索从这些特征提取的功能,以获得其他信息,例如个人的性别,药物使用的影响,隐形眼镜的使用,欺骗等。这项工作提出了对为眼部识别创建的数据库的调查,详细说明其协议以及如何获取其图像。我们还描述并讨论了最受欢迎的眼镜识别比赛(比赛),突出了所提交的算法,只使用Iris特征和融合虹膜和周边地区信息实现了最佳结果。最后,我们描述了一些相关工程,将深度学习技术应用于眼镜识别,并指出了新的挑战和未来方向。考虑到有大量的眼部数据库,并且每个人通常都设计用于特定问题,我们认为这项调查可以广泛概述眼部生物识别学中的挑战。
translated by 谷歌翻译
展示了在欧洲生物安全卓越网络框架内设计和获取的新的多模态生物识别数据库。它由600多个个人在三种情况下在三种情况下获得:1)在互联网上,2)在带台式PC的办公环境中,以及3)在室内/室外环境中,具有移动便携式硬件。这三种方案包括音频/视频数据的共同部分。此外,已使用桌面PC和移动便携式硬件获取签名和指纹数据。此外,使用桌面PC在第二个方案中获取手和虹膜数据。收购事项已于11名欧洲机构进行。 BioSecure多模式数据库(BMDB)的其他功能有:两个采集会话,在某些方式的几种传感器,均衡性别和年龄分布,多式化现实情景,每种方式,跨欧洲多样性,人口统计数据的可用性,以及人口统计数据的可用性与其他多模式数据库的兼容性。 BMDB的新型收购条件允许我们对单币或多模式生物识别系统进行新的具有挑战性的研究和评估,如最近的生物安全的多模式评估活动。还给出了该活动的描述,包括来自新数据库的单个模式的基线结果。预计数据库将通过2008年通过生物安全协会进行研究目的
translated by 谷歌翻译
通过生物手段自动验证一个人的身份是在每天的日常活动,如在机场访问银行服务和安全控制的一个重要应用。为了提高系统的可靠性,通常使用几个生物识别设备。这种组合系统被称为多模式生物测定系统。本文报道生物安全DS2(访问控制)评估由英国萨里大学举办的活动,包括面部,指纹和虹膜的个人认证生物特征的框架内进行基准研究,在媒体针对物理访问控制中的应用-size建立一些500人。虽然多峰生物测定是公调查对象,不存在基准融合算法的比较。朝着这个目标努力,我们设计了两组实验:质量依赖性和成本敏感的评估。质量依赖性评价旨在评估融合算法如何可以在变化的原始图像的质量主要是由于设备的变化来执行。在对成本敏感的评价,另一方面,研究了一种融合算法可以如何执行给定的受限的计算和在软件和硬件故障的存在,从而导致错误,例如失败到获取和失败到匹配。由于多个捕捉设备可用,融合算法应该能够处理这种非理想但仍然真实的场景。在这两种评价中,各融合算法被提供有从每个生物统计比较子系统以及两个模板和查询数据的质量度量得分。在活动的号召的响应证明是非常令人鼓舞的,与提交22个融合系统。据我们所知,这是第一次尝试基准品质为基础多模态融合算法。
translated by 谷歌翻译
匹配的非接触式指纹或手指照片到基于接触的指纹印象在Covid-19尾之后,由于非接触式采集的优越性卫生以及能够以足够的分辨率捕获指纹照片的低成本移动电话的广泛可用性用于验证目的。本文介绍了一个名为C2CL的端到端自动化系统,包括移动手指照片捕获应用,预处理和匹配算法,以处理抑制先前交叉匹配方法的挑战;即i)低脊谷非接触式指纹对比,II)不同卷,俯仰,偏航和手指的距离,III的距离,III)非线性扭曲的基于接触的指纹,和VI)智能手机的不同图像质量。相机。我们的预处理算法段,增强,尺度和不可接受的非接触式指纹,而我们的匹配算法提取细节和纹理表示。使用我们的移动捕获App获取的206个受理接触式2D指纹和基于相应的基于接触的指纹的DataSet和来自206个受试者(每个受试者的2拇指和2个索引手指的指纹)用于评估我们所提出的算法的跨数据库性能。此外,在3个公共数据集上的额外实验结果表明,最先进的与非接触式指纹匹配(焦油为96.67%至98.30%,= 0.01%的焦油)显着提高。
translated by 谷歌翻译
鉴于完整的指纹图像(滚动或拍打),我们介绍了Cyclegan模型,以生成与完整印刷相同身份的多个潜在印象。我们的模型可以控制生成的潜在打印图像中的失真,噪声,模糊和遮挡程度,以获得NIST SD27潜在数据库中介绍的好,坏和丑陋的潜在图像类别。我们的工作的贡献是双重的:(i)证明合成生成的潜在指纹图像与NIST SD27和MSP数据库中的犯罪现场潜伏期的相似性,并由NIST NIST NFIQ 2质量度量和由SOTA指纹匹配器和ROC曲线评估。 (ii)使用合成潜伏期在公共领域增强小型的潜在训练数据库,以提高Deepprint的性能,Deepprint是一种SOTA指纹匹配器,设计用于在三个潜在数据库上滚动的指纹匹配(NIST SD27,NIST SD302和IIITD,以及IIITD,以及IIITD,以及IIITD,以及-slf)。例如,随着合成潜在数据的增强,在具有挑战性的NIST SD27潜在数据库中,Deepprint的排名1检索性能从15.50%提高到29.07%。我们生成合成潜在指纹的方法可用于改善任何潜在匹配器及其单个组件的识别性能(例如增强,分割和特征提取)。
translated by 谷歌翻译
自2020年初以来,COVID-19的大流行对日常生活的许多方面产生了相当大的影响。在全球范围内已经采取了一系列不同的措施,以降低新感染的速度并管理国家卫生服务的压力。主要策略是通过优先考虑远程工作和教育来减少聚会和传播的潜力。当不可避免的聚会时,增强的手卫生和面膜的使用减少了病原体的扩散。这些特殊的措施提出了可靠的生物识别识别的挑战,例如用于面部,语音和手工生物识别技术。同时,新的挑战创造了新的机会和研究方向,例如对无约束的虹膜或眼周识别,基于无触摸的指纹和基于静脉的身份验证以及生物特征特征进行疾病检测的重新兴趣。本文概述了为解决这些挑战和新兴机会而进行的研究。
translated by 谷歌翻译
Periocular recognition has gained attention recently due to demands of increased robustness of face or iris in less controlled scenarios. We present a new system for eye detection based on complex symmetry filters, which has the advantage of not needing training. Also, separability of the filters allows faster detection via one-dimensional convolutions. This system is used as input to a periocular algorithm based on retinotopic sampling grids and Gabor spectrum decomposition. The evaluation framework is composed of six databases acquired both with near-infrared and visible sensors. The experimental setup is complemented with four iris matchers, used for fusion experiments. The eye detection system presented shows very high accuracy with near-infrared data, and a reasonable good accuracy with one visible database. Regarding the periocular system, it exhibits great robustness to small errors in locating the eye centre, as well as to scale changes of the input image. The density of the sampling grid can also be reduced without sacrificing accuracy. Lastly, despite the poorer performance of the iris matchers with visible data, fusion with the periocular system can provide an improvement of more than 20%. The six databases used have been manually annotated, with the annotation made publicly available.
translated by 谷歌翻译
大多数手指静脉特征提取算法由于其质地表示能力而达到满意的性能,尽管同时忽略了手指组织形成的强度分布,以及在某些情况下,将其加工为背景噪声。在本文中,我们利用这种噪音作为一种新型软生物识别性状,以实现更好的手指静脉识别性能。首先,提出了对手指静脉成像原理的详细分析和图像的特性,以表明由背景中的手指组织形成的强度分布可以作为柔软的生物分析来识别。然后,提出了两个指静脉背景层提取算法和三个软生物识别性提取算法,用于强度分布特征提取。最后,提出了一种混合匹配策略来解决初级和软生物识别性质之间的尺寸差异在得分水平上。三个开放式数据库的一系列严格对比实验表明,我们所提出的方法是手指静脉识别的可行和有效。
translated by 谷歌翻译
潜在的指纹对于识别犯罪嫌疑人很重要。但是,认识到参考指纹集中的潜在指纹仍然是一个挑战。现有方法的大多数(如果不是全部)将独立提取每个指纹的表示特征,然后比较这些表示特征在不同过程中识别的相似性。如果没有对特征提取过程的相似性的监督,则很难在最佳地反映两种指纹的相似性,这是匹配决策的基础。在本文中,我们提出了一种新方案,可以将两个指纹的配对关系建模为识别的相似性功能。配对关系是由混合深网建模的,该网络可以处理随机大小的困难和潜在指纹的损坏区域。两个数据库的实验结果表明,所提出的方法的表现优于最新技术。
translated by 谷歌翻译