分享自治是指使自治工人能够与人类合作的方法,以提高人类性能。然而,除了提高性能之外,它通常也可能是有益的,代理同时考虑保留用户的经验或合作满意度。为了解决这一额外目标,我们通过约束自主代理的干预次数来研究改进用户体验的方法。我们提出了两种无模型的加强学习方法,可以考虑到干预措施的艰难和软限制。我们表明,我们的方法不仅表现出现有的基线,而且还消除了手动调整黑匣子超参数,以控制援助水平。我们还提供了对干预情景的深入分析,以进一步照亮系统理解。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
强化学习的标准制定缺乏指定禁止和禁止行为的实用方式。最常见的是,从业者通过手动工程来指定行为规范的任务,这是一个需要几个迭代的反向直观的过程,并且易于奖励代理人。在这项工作中,我们认为,几乎完全用于安全RL的受限制的RL,也有可能大大减少应用加强学习项目中奖励规范所花费的工作量。为此,我们建议在CMDP框架中指定行为偏好,并使用拉格朗日方法,该方法寻求解决代理程序的策略和拉格朗日乘法器之间的最小问题,以自动称量每个行为约束。具体而言,我们研究了如何调整CMDP,以便解决基于目标的任务,同时遵守一组行为约束,并提出对Sac-Lagrangian算法的修改以处理若干约束的具有挑战性的情况。我们对这一框架进行了一系列持续控制任务,该任务与用于视频游戏中NPC设计的加固学习应用相关。
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
随着自动驾驶行业的发展,自动驾驶汽车群体的潜在相互作用也随之增长。结合人工智能和模拟的进步,可以模拟此类组,并且可以学习控制内部汽车的安全模型。这项研究将强化学习应用于多代理停车场的问题,在那里,汽车旨在有效地停车,同时保持安全和理性。利用强大的工具和机器学习框架,我们以马尔可夫决策过程的形式与独立学习者一起设计和实施灵活的停车环境,从而利用多代理通信。我们实施了一套工具来进行大规模执行实验,从而取得了超过98.1%成功率的高达7辆汽车的模型,从而超过了现有的单代机构模型。我们还获得了与汽车在我们环境中表现出的竞争性和协作行为有关的几个结果,这些行为的密度和沟通水平各不相同。值得注意的是,我们发现了一种没有竞争的合作形式,以及一种“泄漏”的合作形式,在没有足够状态的情况下,代理商进行了协作。这种工作在自动驾驶和车队管理行业中具有许多潜在的应用,并为将强化学习应用于多机构停车场提供了几种有用的技术和基准。
translated by 谷歌翻译
设计加固学习(RL)代理通常是一个艰难的过程,需要大量的设计迭代。由于多种原因,学习可能会失败,并且标准RL方法提供的工具太少,无法洞悉确切原因。在本文中,我们展示了如何将价值分解整合到一类广泛的参与者批评算法中,并使用它来协助迭代代理设计过程。价值分解将奖励函数分为不同的组件,并学习每个组件的价值估计值。这些价值估计提供了对代理商的学习和决策过程的见解,并使新的培训方法可以减轻常见问题。作为演示,我们介绍了SAC-D,这是一种适合价值分解的软角色批评(SAC)的变体。 SAC-D保持与SAC相似的性能,同时学习一组更大的价值预测。我们还介绍了基于分解的工具来利用此信息,包括新的奖励影响指标,该指标衡量了每个奖励组件对代理决策的影响。使用这些工具,我们提供了分解用于识别和解决环境和代理设计问题的几种证明。价值分解广泛适用,易于将其纳入现有算法和工作流程中,使其成为RL从业人员的工具箱中的强大工具。
translated by 谷歌翻译
人工智能(AI)的努力是设计能够完成复杂任务的自主代理。也就是说,加强学习(RL)提出了学习最佳行为的理论背景。实际上,RL算法依靠几何折扣来评估这种最优性。不幸的是,这并不涵盖未来回报并没有达到成倍价值的决策过程。根据问题的不同,此限制会引起样本信息(由于饲料后额定值是指数衰减),并且需要其他课程/探索机制(以处理稀疏,欺骗性或对抗性奖励)。在本文中,我们通过通过延迟目标功能将折现问题提出来解决这些问题。我们研究了得出的基本RL问题:1)最佳固定解和2)最佳非平稳控制的近似值。设计的算法解决了表格环境上的​​硬探索问题,并在经典的模拟机器人基准上提高了样品效率。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
具有成本效益的资产管理是多个行业的兴趣领域。具体而言,本文开发了深入的加固学习(DRL)解决方案,以自动确定不断恶化的水管的最佳康复政策。我们在在线和离线DRL设置中处理康复计划的问题。在在线DRL中,代理与具有不同长度,材料和故障率特征的多个管道的模拟环境进行交互。我们使用深Q学习(DQN)训练代理商,以最低限度的平均成本和减少故障概率学习最佳政策。在离线学习中,代理使用静态数据,例如DQN重播数据,通过保守的Q学习算法学习最佳策略,而无需与环境进行进一步的交互。我们证明,基于DRL的政策改善了标准预防,纠正和贪婪的计划替代方案。此外,从固定的DQN重播数据集中学习超过在线DQN设置。结果保证,由大型国家和行动轨迹组成的水管的现有恶化概况为在离线环境中学习康复政策提供了宝贵的途径,而无需模拟器。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
使用强化学习解决复杂的问题必须将问题分解为可管理的任务,无论是明确或隐式的任务,并学习解决这些任务的政策。反过来,这些政策必须由采取高级决策的总体政策来控制。这需要培训算法在学习这些政策时考虑这种等级决策结构。但是,实践中的培训可能会导致泛化不良,要么在很少的时间步骤执行动作,要么将其全部转变为单个政策。在我们的工作中,我们介绍了一种替代方法来依次学习此类技能,而无需使用总体层次的政策。我们在环境的背景下提出了这种方法,在这种环境的背景下,学习代理目标的主要组成部分是尽可能长时间延长情节。我们将我们提出的方法称为顺序选择评论家。我们在我们开发的灵活的模拟3D导航环境中演示了我们在导航和基于目标任务的方法的实用性。我们还表明,我们的方法优于先前的方法,例如在我们的环境中,柔软的演员和软选择评论家,以及健身房自动驾驶汽车模拟器和Atari River RAID RAID环境。
translated by 谷歌翻译
加强学习(RL)提供了通过试验和错误学习的自然主义框架,这是由于其简单和有效性,并且由于其与人类和动物如何通过经验获得技能。然而,现实世界的体现学习,例如由人类和动物执行的,位于持续的非剧目世界中,而RL中的共同基准任务是epiSodic,在试验之间重置的环境以提供多次尝试。当尝试采取为ePiSodic模拟环境开发的RL算法并在现实世界平台上运行时,这种差异呈现出一项重大挑战,如机器人。在本文中,我们的目标是通过为自主强化学习(ARL)框架(ARL)提供框架来解决这一差异:加强学习的代理商不仅通过自己的经验学习,而且还争夺缺乏人类监督在试验之间重置。我们在此框架上介绍了一个模拟的基准伯爵,其中包含一系列多样化和具有挑战性的模拟任务,这些任务反映了所引入学习的障碍,当只有最小的对外在干预的依赖性时,可以假设。我们表明,作为干预措施的剧集RL和现有方法斗争的标准方法最小化,强调了对强化学习开发新算法的需求,更加注重自主。
translated by 谷歌翻译
深度加强学习(DEEPRL)方法已广泛用于机器人学,以了解环境,自主获取行为。深度互动强化学习(Deepirl)包括来自外部培训师或专家的互动反馈,提供建议,帮助学习者选择采取行动以加快学习过程。但是,目前的研究仅限于仅为特工现任提供可操作建议的互动。另外,在单个使用之后,代理丢弃该信息,该用途在为Revisit以相同状态引起重复过程。在本文中,我们提出了广泛的建议(BPA),这是一种广泛的持久的咨询方法,可以保留并重新使用加工信息。它不仅可以帮助培训师提供与类似状态相关的更一般性建议,而不是仅仅是当前状态,而且还允许代理加快学习过程。我们在两个连续机器人场景中测试提出的方法,即购物车极衡任务和模拟机器人导航任务。所得结果表明,使用BPA的代理的性能在于与深层方法相比保持培训师所需的相互作用的数量。
translated by 谷歌翻译
Hierarchical Reinforcement Learning (HRL) algorithms have been demonstrated to perform well on high-dimensional decision making and robotic control tasks. However, because they solely optimize for rewards, the agent tends to search the same space redundantly. This problem reduces the speed of learning and achieved reward. In this work, we present an Off-Policy HRL algorithm that maximizes entropy for efficient exploration. The algorithm learns a temporally abstracted low-level policy and is able to explore broadly through the addition of entropy to the high-level. The novelty of this work is the theoretical motivation of adding entropy to the RL objective in the HRL setting. We empirically show that the entropy can be added to both levels if the Kullback-Leibler (KL) divergence between consecutive updates of the low-level policy is sufficiently small. We performed an ablative study to analyze the effects of entropy on hierarchy, in which adding entropy to high-level emerged as the most desirable configuration. Furthermore, a higher temperature in the low-level leads to Q-value overestimation and increases the stochasticity of the environment that the high-level operates on, making learning more challenging. Our method, SHIRO, surpasses state-of-the-art performance on a range of simulated robotic control benchmark tasks and requires minimal tuning.
translated by 谷歌翻译
In order to avoid conventional controlling methods which created obstacles due to the complexity of systems and intense demand on data density, developing modern and more efficient control methods are required. In this way, reinforcement learning off-policy and model-free algorithms help to avoid working with complex models. In terms of speed and accuracy, they become prominent methods because the algorithms use their past experience to learn the optimal policies. In this study, three reinforcement learning algorithms; DDPG, TD3 and SAC have been used to train Fetch robotic manipulator for four different tasks in MuJoCo simulation environment. All of these algorithms are off-policy and able to achieve their desired target by optimizing both policy and value functions. In the current study, the efficiency and the speed of these three algorithms are analyzed in a controlled environment.
translated by 谷歌翻译
最先进的多机构增强学习(MARL)方法为各种复杂问题提供了有希望的解决方案。然而,这些方法都假定代理执行同步的原始操作执行,因此它们不能真正可扩展到长期胜利的真实世界多代理/机器人任务,这些任务固有地要求代理/机器人以异步的理由,涉及有关高级动作选择的理由。不同的时间。宏观行动分散的部分可观察到的马尔可夫决策过程(MACDEC-POMDP)是在完全合作的多代理任务中不确定的异步决策的一般形式化。在本论文中,我们首先提出了MacDec-Pomdps的一组基于价值的RL方法,其中允许代理在三个范式中使用宏观成果功能执行异步学习和决策:分散学习和控制,集中学习,集中学习和控制,以及分散执行的集中培训(CTDE)。在上述工作的基础上,我们在三个训练范式下制定了一组基于宏观行动的策略梯度算法,在该训练范式下,允许代理以异步方式直接优化其参数化策略。我们在模拟和真实的机器人中评估了我们的方法。经验结果证明了我们在大型多代理问题中的方法的优势,并验证了我们算法在学习具有宏观actions的高质量和异步溶液方面的有效性。
translated by 谷歌翻译
值得信赖的强化学习算法应有能力解决挑战性的现实问题,包括{Robustly}处理不确定性,满足{安全}的限制以避免灾难性的失败,以及在部署过程中{prencepentiming}以避免灾难性的失败}。这项研究旨在概述这些可信赖的强化学习的主要观点,即考虑其在鲁棒性,安全性和概括性上的内在脆弱性。特别是,我们给出严格的表述,对相应的方法进行分类,并讨论每个观点的基准。此外,我们提供了一个前景部分,以刺激有希望的未来方向,并简要讨论考虑人类反馈的外部漏洞。我们希望这项调查可以在统一的框架中将单独的研究汇合在一起,并促进强化学习的可信度。
translated by 谷歌翻译
强化学习(RL)涉及在未知系统中执行探索性动作。这可以将学习代理放在危险且潜在的灾难性系统中。当前在RL中解决安全学习的方法同时权衡了安全探索和任务实现。在本文中,我们介绍了新一代的RL求解器,这些求解器学会最大程度地减少安全性违规行为,同时在安全政策可以容忍的范围内最大化任务奖励。我们的方法引入了一个新型的两人框架,用于安全RL,称为分配探索安全培训算法(DESTA)。 DESTA的核心是两种自适应代理之间的游戏:安全代理,其任务是最大程度地减少安全违规行为和任务代理,其目标是最大程度地提高环境奖励。具体而言,安全代理可以在任何给定点有选择地控制系统,以防止任务代理在任何其他州自由执行其策略时违反安全性。该框架使安全代理能够学会在培训和测试时间中最大程度地减少未来安全违规行为的某些行动,而任务代理人执行的动作可以最大程度地提高其他任何地方的任务绩效。从理论上讲,我们证明DESTA会汇合到稳定的点,从而最大程度地违反了对预验证的政策的行为。从经验上讲,我们表明了DESTA提高现有政策安全性的能力,其次,当对任务代理和安全代理人同时培训时,构建安全的RL政策。我们展示了DESTA在Lunar Lander和Openai Gym的Frozen Lake中的领先RL方法的出色表现。
translated by 谷歌翻译
Drug dosing is an important application of AI, which can be formulated as a Reinforcement Learning (RL) problem. In this paper, we identify two major challenges of using RL for drug dosing: delayed and prolonged effects of administering medications, which break the Markov assumption of the RL framework. We focus on prolongedness and define PAE-POMDP (Prolonged Action Effect-Partially Observable Markov Decision Process), a subclass of POMDPs in which the Markov assumption does not hold specifically due to prolonged effects of actions. Motivated by the pharmacology literature, we propose a simple and effective approach to converting drug dosing PAE-POMDPs into MDPs, enabling the use of the existing RL algorithms to solve such problems. We validate the proposed approach on a toy task, and a challenging glucose control task, for which we devise a clinically-inspired reward function. Our results demonstrate that: (1) the proposed method to restore the Markov assumption leads to significant improvements over a vanilla baseline; (2) the approach is competitive with recurrent policies which may inherently capture the prolonged effect of actions; (3) it is remarkably more time and memory efficient than the recurrent baseline and hence more suitable for real-time dosing control systems; and (4) it exhibits favorable qualitative behavior in our policy analysis.
translated by 谷歌翻译