将间歇性可再生能源集成到大量的电网中是具有挑战性的。旨在解决这一困难的建立良好的方法涉及即将到来的能源供应可变性以适应电网的响应。在太阳能中,可以在全天空摄像机(前方30分钟)和卫星观测(提前6小时)的不同时间尺度上预测由遮挡云引起的短期变化。在这项研究中,我们将这两种互补的观点集成到单个机器学习框架中的云覆盖物上,以改善时间内(最高60分钟)的辐照度预测。确定性和概率预测均在不同的天气条件(晴朗,多云,阴天)以及不同的输入配置(天空图像,卫星观测和/或过去的辐照度值)中进行评估。我们的结果表明,混合模型在晴朗的条件下有益于预测,并改善了长期预测。这项研究为将来的新颖方法奠定了基础,即在单个学习框架中将天空图像和卫星观测结合起来,以推动太阳现象。
translated by 谷歌翻译
太阳能的高效整合到电力组合中取决于其间歇性的可靠预期。预测由云覆盖动态产生的太阳辐照度的时间变异的有希望的方法是基于地面天空图像或卫星图像序列的分析。尽管结果令人鼓舞,但现有深度学习方法的经常性限制在于对过去观察的反应而不是积极预期未来事件的无处不在的趋势。这导致频繁的时间滞后和有限的预测突发事件的能力。为了解决这一挑战,我们介绍了Eclipse,一种时空神经网络架构,即模型从天空图像模拟云运动,不仅预测未来的辐照水平,而且还可以在本地辐照度图上提供更丰富的信息。我们表明Eclipse预期关键事件,并在产生视觉上现实期货的同时降低时间延误。
translated by 谷歌翻译
汇集操作引起的翻译不变性是卷积神经网络的固有属性,这有助于诸如分类的许多计算机视觉任务。然而,为了利用旋转不变的任务,卷积架构需要特定的旋转不变层或广泛的数据增强,以从给定空间配置的不同旋转版本中学习。将图像展开到其极性坐标中提供了更明显的表示,以训练卷积架构,因为旋转不变性变为平移,因此可以从单个图像中学习给定场景的视觉上不同但其他等同的旋转版本。我们展示了两个基于视觉的太阳辐照性预测挑战(即使用地面拍摄的天空图像或卫星图像),即该预处理步骤通过标准化场景表示来显着提高预测结果,同时将培训时间减少4倍4倍。使用旋转增强数据。此外,该变换放大了围绕旋转中心的区域,导致更准确的短期辐照度预测。
translated by 谷歌翻译
太阳能现在是历史上最便宜的电力形式。不幸的是,由于其变异性,显着提高栅格的太阳能的一部分仍然具有挑战性,这使得电力的供需平衡更加困难。虽然热发电机坡度 - 它们可以改变输出的最高速率 - 是有限的,太阳能的坡度基本上是无限的。因此,准确的近期太阳能预测或垂圈,对于提供预警来调整热发电机输出,以响应于太阳能变化来调整热发电机,以确保平衡供需。为了解决问题,本文开发了使用自我监督学习的丰富和易于使用的多光谱卫星数据的太阳能垂圈的一般模型。具体而言,我们使用卷积神经网络(CNN)和长短期内存网络(LSTM)开发深度自动回归模型,这些模型在多个位置训练全球培训,以预测最近推出的最近收集的时空数据的未来观察-R系列卫星。我们的模型估计了基于卫星观测的未来的太阳辐照度,我们向较小的场地特定的太阳能数据培训的回归模型提供,以提供近期太阳能光伏(PV)预测,其考虑了现场特征的特征。我们评估了我们在25个太阳能场所的不同覆盖区域和预测视野的方法,并表明我们的方法利用地面真理观察结果产生靠近模型的错误。
translated by 谷歌翻译
我们基于技能评分,对确定性太阳预测进行了首次全面的荟萃分析,筛选了Google Scholar的1,447篇论文,并审查了320篇论文的全文以进行数据提取。用多元自适应回归样条模型,部分依赖图和线性回归构建和分析了4,758点的数据库。值得注意的是,分析说明了数据中最重要的非线性关系和交互项。我们量化了对重要变量的预测准确性的影响,例如预测范围,分辨率,气候条件,区域的年度太阳辐照度水平,电力系统大小和容量,预测模型,火车和测试集以及使用不同的技术和投入。通过控制预测之间的关键差异,包括位置变量,可以在全球应用分析的发现。还提供了该领域科学进步的概述。
translated by 谷歌翻译
Solar forecasting from ground-based sky images using deep learning models has shown great promise in reducing the uncertainty in solar power generation. One of the biggest challenges for training deep learning models is the availability of labeled datasets. With more and more sky image datasets open sourced in recent years, the development of accurate and reliable solar forecasting methods has seen a huge growth in potential. In this study, we explore three different training strategies for deep-learning-based solar forecasting models by leveraging three heterogeneous datasets collected around the world with drastically different climate patterns. Specifically, we compare the performance of models trained individually based on local datasets (local models) and models trained jointly based on the fusion of multiple datasets from different locations (global models), and we further examine the knowledge transfer from pre-trained solar forecasting models to a new dataset of interest (transfer learning models). The results suggest that the local models work well when deployed locally, but significant errors are observed for the scale of the prediction when applied offsite. The global model can adapt well to individual locations, while the possible increase in training efforts need to be taken into account. Pre-training models on a large and diversified source dataset and transferring to a local target dataset generally achieves superior performance over the other two training strategies. Transfer learning brings the most benefits when there are limited local data. With 80% less training data, it can achieve 1% improvement over the local baseline model trained using the entire dataset. Therefore, we call on the efforts from the solar forecasting community to contribute to a global dataset containing a massive amount of imagery and displaying diversified samples with a range of sky conditions.
translated by 谷歌翻译
太阳能的间歇性质挑战了光伏(PV)在电网中的大规模集成。使用深度学习的基于天空图像的太阳预测已被认为是预测短期波动的一种有希望的方法。但是,对于基于图像的太阳预测,几乎没有公开可用的标准化基准数据集,这限制了不同预测模型的比较和预测方法的探索。为了填补这些空白,我们介绍了Skipp'd-天空图像和光伏发电数据集。该数据集包含三年(2017-2019)的质量控制下采样的天空图像和PV发电数据,这些数据可用于使用深度学习的短期太阳能预测。此外,为了支持研究的灵活性,我们还提供了高分辨率,高频天空图像和PV发电数据以及并发的Sky录像。我们还包括一个包含数据处理脚本和基线模型实现的代码库,以供研究人员重现我们以前的工作并加速其在太阳预测中的研究。
translated by 谷歌翻译
由于其对人类生命,运输,粮食生产和能源管理的高度影响,因此在科学上研究了预测天气的问题。目前的运营预测模型基于物理学,并使用超级计算机来模拟大气预测,提前预测数小时和日期。更好的基于物理的预测需要改进模型本身,这可能是一个实质性的科学挑战,以及潜在的分辨率的改进,可以计算令人望而却步。基于神经网络的新出现的天气模型代表天气预报的范式转变:模型学习来自数据的所需变换,而不是依赖于手工编码的物理,并计算效率。然而,对于神经模型,每个额外的辐射时间都会构成大量挑战,因为它需要捕获更大的空间环境并增加预测的不确定性。在这项工作中,我们提出了一个神经网络,能够提前十二小时的大规模降水预测,并且从相同的大气状态开始,该模型能够比最先进的基于物理的模型更高的技能HRRR和HREF目前在美国大陆运营。可解释性分析加强了模型学会模拟先进物理原则的观察。这些结果代表了建立与神经网络有效预测的新范式的实质性步骤。
translated by 谷歌翻译
提出了一个深度学习模型,以便在未来60分钟的五分钟时间分辨率下以闪电的形式出现。该模型基于反复横向的结构,该结构使其能够识别并预测对流的时空发展,包括雷暴细胞的运动,生长和衰变。预测是在固定网格上执行的,而无需使用风暴对象检测和跟踪。从瑞士和周围的区域收集的输入数据包括地面雷达数据,可见/红外卫星数据以及衍生的云产品,闪电检测,数值天气预测和数字高程模型数据。我们分析了不同的替代损失功能,班级加权策略和模型特征,为将来的研究提供了指南,以最佳地选择损失功能,并正确校准其模型的概率预测。基于这些分析,我们在这项研究中使用焦点损失,但得出结论,它仅在交叉熵方面提供了较小的好处,如果模型的重新校准不实用,这是一个可行的选择。该模型在60分钟的现有周期内实现了0.45的像素临界成功指数(CSI)为0.45,以预测8 km的闪电发生,范围从5分钟的CSI到5分钟的提前时间到CSI到CSI的0.32在A处。收货时间60分钟。
translated by 谷歌翻译
对于电网操作,具有精细时间和空间分辨率的太阳能发电准确预测对于电网的操作至关重要。然而,与数值天气预报(NWP)结合机器学习的最先进方法具有粗略分辨率。在本文中,我们采用曲线图信号处理透视和型号的多网站光伏(PV)生产时间序列作为图表上的信号,以捕获它们的时空依赖性并实现更高的空间和时间分辨率预测。我们提出了两种新颖的图形神经网络模型,用于确定性多站点PV预测,被称为图形 - 卷积的长期内存(GCLSTM)和图形 - 卷积变压器(GCTRAFO)模型。这些方法仅依赖于生产数据并利用PV系统提供密集的虚拟气象站网络的直觉。所提出的方法是在整整一年的两组数据集中评估:1)来自304个真实光伏系统的生产数据,以及2)模拟生产1000个PV系统,包括瑞士分布。该拟议的模型优于最先进的多站点预测方法,用于预测前方6小时的预测视野。此外,所提出的模型以NWP优于最先进的单站点方法,如前方的视野上的输入。
translated by 谷歌翻译
分布式的小型太阳能光伏(PV)系统正在以快速增加的速度安装。这可能会对分销网络和能源市场产生重大影响。结果,在不同时间分辨率和视野中,非常需要改善对这些系统发电的预测。但是,预测模型的性能取决于分辨率和地平线。在这种情况下,将多个模型的预测结合到单个预测中的预测组合(合奏)可能是鲁棒的。因此,在本文中,我们提供了对五个最先进的预测模型的性能以及在多个分辨率和视野下的现有预测组合的比较和见解。我们提出了一种基于粒子群优化(PSO)的预测组合方法,该方法将通过加权单个模型产生的预测来使预报掌握能够为手头的任务产生准确的预测。此外,我们将提出的组合方法的性能与现有的预测组合方法进行了比较。使用现实世界中的PV电源数据集进行了全面的评估,该数据集在美国三个位置的25个房屋中测得。在四种不同的分辨率和四个不同视野之间的结果表明,基于PSO的预测组合方法的表现优于使用任何单独的预测模型和其他预测组合的使用,而平均平均绝对规模误差降低了3.81%,而最佳性能则最佳性能单个个人模型。我们的方法使太阳预报员能够为其应用产生准确的预测,而不管预测分辨率或视野如何。
translated by 谷歌翻译
In this paper, we present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast. For this purpose, we establish a data-driven environment by downloading $43$ years of hourly global weather data from the 5th generation of ECMWF reanalysis (ERA5) data and train a few deep neural networks with about $256$ million parameters in total. The spatial resolution of forecast is $0.25^\circ\times0.25^\circ$, comparable to the ECMWF Integrated Forecast Systems (IFS). More importantly, for the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy (latitude-weighted RMSE and ACC) of all factors (e.g., geopotential, specific humidity, wind speed, temperature, etc.) and in all time ranges (from one hour to one week). There are two key strategies to improve the prediction accuracy: (i) designing a 3D Earth Specific Transformer (3DEST) architecture that formulates the height (pressure level) information into cubic data, and (ii) applying a hierarchical temporal aggregation algorithm to alleviate cumulative forecast errors. In deterministic forecast, Pangu-Weather shows great advantages for short to medium-range forecast (i.e., forecast time ranges from one hour to one week). Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast (e.g., tropical cyclone tracking) and large-member ensemble forecast in real-time. Pangu-Weather not only ends the debate on whether AI-based methods can surpass conventional NWP methods, but also reveals novel directions for improving deep learning weather forecast systems.
translated by 谷歌翻译
Sky-image-based solar forecasting using deep learning has been recognized as a promising approach in reducing the uncertainty in solar power generation. However, one of the biggest challenges is the lack of massive and diversified sky image samples. In this study, we present a comprehensive survey of open-source ground-based sky image datasets for very short-term solar forecasting (i.e., forecasting horizon less than 30 minutes), as well as related research areas which can potentially help improve solar forecasting methods, including cloud segmentation, cloud classification and cloud motion prediction. We first identify 72 open-source sky image datasets that satisfy the needs of machine/deep learning. Then a database of information about various aspects of the identified datasets is constructed. To evaluate each surveyed datasets, we further develop a multi-criteria ranking system based on 8 dimensions of the datasets which could have important impacts on usage of the data. Finally, we provide insights on the usage of these datasets for different applications. We hope this paper can provide an overview for researchers who are looking for datasets for very short-term solar forecasting and related areas.
translated by 谷歌翻译
Wind power forecasting helps with the planning for the power systems by contributing to having a higher level of certainty in decision-making. Due to the randomness inherent to meteorological events (e.g., wind speeds), making highly accurate long-term predictions for wind power can be extremely difficult. One approach to remedy this challenge is to utilize weather information from multiple points across a geographical grid to obtain a holistic view of the wind patterns, along with temporal information from the previous power outputs of the wind farms. Our proposed CNN-RNN architecture combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to extract spatial and temporal information from multi-dimensional input data to make day-ahead predictions. In this regard, our method incorporates an ultra-wide learning view, combining data from multiple numerical weather prediction models, wind farms, and geographical locations. Additionally, we experiment with global forecasting approaches to understand the impact of training the same model over the datasets obtained from multiple different wind farms, and we employ a method where spatial information extracted from convolutional layers is passed to a tree ensemble (e.g., Light Gradient Boosting Machine (LGBM)) instead of fully connected layers. The results show that our proposed CNN-RNN architecture outperforms other models such as LGBM, Extra Tree regressor and linear regression when trained globally, but fails to replicate such performance when trained individually on each farm. We also observe that passing the spatial information from CNN to LGBM improves its performance, providing further evidence of CNN's spatial feature extraction capabilities.
translated by 谷歌翻译
降水预测是一项重要的科学挑战,对社会产生广泛影响。从历史上看,这项挑战是使用数值天气预测(NWP)模型解决的,该模型基于基于物理的模拟。最近,许多作品提出了一种替代方法,使用端到端深度学习(DL)模型来替代基于物理的NWP。尽管这些DL方法显示出提高的性能和计算效率,但它们在长期预测中表现出局限性,并且缺乏NWP模型的解释性。在这项工作中,我们提出了一个混合NWP-DL工作流程,以填补独立NWP和DL方法之间的空白。在此工作流程下,NWP输出被馈入深层模型,该模型后处理数据以产生精致的降水预测。使用自动气象站(AWS)观测值作为地面真相标签,对深层模型进行了监督训练。这可以实现两全其美,甚至可以从NWP技术的未来改进中受益。为了促进朝这个方向进行研究,我们提出了一个专注于朝鲜半岛的新型数据集,该数据集称为KOMET(KOMEN(KOREA气象数据集),由NWP预测和AWS观察组成。对于NWP,我们使用全局数据同化和预测系统-KOREA集成模型(GDAPS-KIM)。
translated by 谷歌翻译
We introduce a machine-learning (ML)-based weather simulator--called "GraphCast"--which outperforms the most accurate deterministic operational medium-range weather forecasting system in the world, as well as all previous ML baselines. GraphCast is an autoregressive model, based on graph neural networks and a novel high-resolution multi-scale mesh representation, which we trained on historical weather data from the European Centre for Medium-Range Weather Forecasts (ECMWF)'s ERA5 reanalysis archive. It can make 10-day forecasts, at 6-hour time intervals, of five surface variables and six atmospheric variables, each at 37 vertical pressure levels, on a 0.25-degree latitude-longitude grid, which corresponds to roughly 25 x 25 kilometer resolution at the equator. Our results show GraphCast is more accurate than ECMWF's deterministic operational forecasting system, HRES, on 90.0% of the 2760 variable and lead time combinations we evaluated. GraphCast also outperforms the most accurate previous ML-based weather forecasting model on 99.2% of the 252 targets it reported. GraphCast can generate a 10-day forecast (35 gigabytes of data) in under 60 seconds on Cloud TPU v4 hardware. Unlike traditional forecasting methods, ML-based forecasting scales well with data: by training on bigger, higher quality, and more recent data, the skill of the forecasts can improve. Together these results represent a key step forward in complementing and improving weather modeling with ML, open new opportunities for fast, accurate forecasting, and help realize the promise of ML-based simulation in the physical sciences.
translated by 谷歌翻译
尽管有持续的改进,但降水预测仍然没有其他气象变量的准确和可靠。造成这种情况的一个主要因素是,几个影响降水分布和强度的关键过程出现在全球天气模型的解决规模以下。计算机视觉社区已经证明了生成的对抗网络(GAN)在超分辨率问题上取得了成功,即学习为粗图像添加精细的结构。 Leinonen等。 (2020年)先前使用GAN来产生重建的高分辨率大气场的集合,并给定较粗糙的输入数据。在本文中,我们证明了这种方法可以扩展到更具挑战性的问题,即通过使用高分辨率雷达测量值作为“地面真相”来提高天气预报模型中相对低分辨率输入的准确性和分辨率。神经网络必须学会添加分辨率和结构,同时考虑不可忽略的预测错误。我们表明,甘斯和vae-gan可以在创建高分辨率的空间相干降水图的同时,可以匹配最新的后处理方法的统计特性。我们的模型比较比较与像素和合并的CRP分数,功率谱信息和等级直方图(用于评估校准)的最佳现有缩减方法。我们测试了我们的模型,并表明它们在各种场景中的表现,包括大雨。
translated by 谷歌翻译
提出了一种使用天气数据实时太阳生成预测的新方法,同时提出了既有空间结构依赖性的依赖。随着时间的推移,观察到的网络被预测到较低维度的表示,在该表示的情况下,在推理阶段使用天气预报时,使用各种天气测量来训练结构化回归模型。从国家太阳辐射数据库获得的德克萨斯州圣安东尼奥地区的288个地点进行了实验。该模型预测具有良好精度的太阳辐照度(夏季R2 0.91,冬季为0.85,全球模型为0.89)。随机森林回归者获得了最佳准确性。进行了多个实验来表征缺失数据的影响和不同的时间范围的影响,这些范围提供了证据表明,新算法不仅在随机的情况下,而且在机制是空间和时间上都丢失的数据是可靠的。
translated by 谷歌翻译
以知情方式监测和管理地球林是解决生物多样性损失和气候变化等挑战的重要要求。虽然森林评估的传统或空中运动提供了在区域一级分析的准确数据,但将其扩展到整个国家,以外的高度分辨率几乎不可能。在这项工作中,我们提出了一种贝叶斯深度学习方法,以10米的分辨率为全国范围的森林结构变量,使用自由可用的卫星图像作为输入。我们的方法将Sentinel-2光学图像和Sentinel-1合成孔径雷达图像共同变换为五种不同的森林结构变量的地图:95th高度百分位,平均高度,密度,基尼系数和分数盖。我们从挪威的41个机载激光扫描任务中培训和测试我们的模型,并证明它能够概括取消测试区域,从而达到11%和15%之间的归一化平均值误差,具体取决于变量。我们的工作也是第一个提出贝叶斯深度学习方法的工作,以预测具有良好校准的不确定性估计的森林结构变量。这些提高了模型的可信度及其适用于需要可靠的信心估计的下游任务,例如知情决策。我们提出了一组广泛的实验,以验证预测地图的准确性以及预测的不确定性的质量。为了展示可扩展性,我们为五个森林结构变量提供挪威地图。
translated by 谷歌翻译
陆地温度(LST)是监控土地面过程时的关键参数。然而,云污染和空间和时间分辨率之间的权衡大大妨碍了对高质量的热红外(TIR)遥感数据的访问。尽管采取了巨大的努力来解决这些困境,但仍然难以通过并发空间完整性和高时空分辨率产生LST估计。陆地表面模型(LSM)可用于模拟高度的时间分辨率的Genpless LST,但这通常具有低空间分辨率。在本文中,我们向卫星观察和LSM模拟LST数据提供了一个集成的温度融合框架,以通过60米的空间分辨率和半小时时间分辨率映射Gapless LST。全局线性模型(GLOLM)模型和昼夜陆地表面温度周期(DTC)模型分别作为预处理步骤进行传感器和不同LST数据之间的时间归一化。然后使用基于滤波器的时空集成融合模型融合Landsat LST,适度分辨率成像光谱仪(MODIS)LST和社区土地模型5.0(CLM 5.0)-SIMUTION LST。在一个城市主导地区(中国武汉市)和自然主导地区(中国海河流域)实施了评估,在准确性,空间可变性和日颞动力学方面。结果表明,熔融LST与实际LANDSAT LST数据(原位LST测量)高于Pearson相关系数,在0.94(0.97-0.99)方面,平均绝对误差为0.71-0.98k(0.82-3.17 k )和根平均误差为0.97-1.26 k(1.09-3.97 k)。
translated by 谷歌翻译