理想情况下,机器人应该以最大化关于其内部系统和外部操作环境的状态所获得的知识的方式移动。轨迹设计是一个具有挑战性的问题,从各种角度来看,从信息理论分析到基于倾斜的方法。最近,已经提出了基于可观察性的指标来找到能够快速准确的状态和参数估计的轨迹。这些方法的活力和功效尚未在文献中众所周知。在本文中,我们比较了两个最先进的方法,以便可观察性感知轨迹优化,并寻求增加重要的理论澄清和对其整体效力的宝贵讨论。为了评估,我们使用逼真的物理模拟器检查传感器到传感器外部自校准的代表性任务。我们还研究了这些算法的灵敏度,以改变易欣欣传感器测量的信息内容。
translated by 谷歌翻译
姿势估计对于机器人感知,路径计划等很重要。机器人姿势可以在基质谎言组上建模,并且通常通过基于滤波器的方法进行估算。在本文中,我们在存在随机噪声的情况下建立了不变扩展Kalman滤波器(IEKF)的误差公式,并将其应用于视觉辅助惯性导航。我们通过OpenVINS平台上的数值模拟和实验评估我们的算法。在Euroc公共MAV数据集上执行的仿真和实验都表明,我们的算法优于某些基于最先进的滤波器方法,例如基于Quaternion的EKF,首先估计Jacobian EKF等。
translated by 谷歌翻译
恶劣天气的可靠运行对于部署安全自治车辆(AVS)至关重要。通过熔化来自标准AV传感器套件(即,Lidars,Cameras)的数据,可以实现鲁棒性和可靠性,其中天气强壮的传感器,例如毫米波雷达。批判性地,精确的传感器数据融合需要了解传感器对之间的刚体变换,这可以通过外部校准的过程来确定。已经为2D(平面)雷达传感器设计了许多外部校准算法 - 然而,最近开发的低成本3D毫米波雷达被设定为在许多应用中取代其2D对应物。在本文中,我们提出了一种连续时间3D雷达 - 相机外在校准算法,其利用雷达速度测量,并且与大多数现有技术不同,不需要专门的雷达逆向反射器存在于环境中。我们推出了我们配方的可观察性性质,并通过合成和现实世界实验证明了我们的算法的功效。
translated by 谷歌翻译
惯性辅助系统需要连续的运动激发,以表征测量偏差,这些偏差将使本地化框架需要准确的集成。本文建议使用信息性的路径计划来找到最佳的轨迹,以最大程度地减少IMU偏见的不确定性和一种自适应痕迹方法,以指导规划师朝着有助于收敛的轨迹迈进。关键贡献是一种基于高斯工艺(GP)的新型回归方法,以从RRT*计划算法的变体之间实现连续性和可区分性。我们采用应用于GP内核函数的线性操作员不仅推断连续位置轨迹,还推断速度和加速度。线性函数的使用实现了IMU测量给出的速度和加速度约束,以施加在位置GP模型上。模拟和现实世界实验的结果表明,IMU偏差收敛的计划有助于最大程度地减少状态估计框架中的本地化错误。
translated by 谷歌翻译
近几十年来,Camera-IMU(惯性测量单元)传感器融合已经过度研究。已经提出了具有自校准的运动估计的许多可观察性分析和融合方案。然而,它一直不确定是否在一般运动下观察到相机和IMU内在参数。为了回答这个问题,我们首先证明,对于全球快门Camera-IMU系统,所有内在和外在参数都可以观察到未知的地标。鉴于此,滚动快门(RS)相机的时间偏移和读出时间也证明是可观察到的。接下来,为了验证该分析并解决静止期间结构无轨滤波器的漂移问题,我们开发了一种基于关键帧的滑动窗滤波器(KSWF),用于测量和自校准,它适用于单眼RS摄像机或立体声RS摄像机。虽然关键帧概念广泛用于基于视觉的传感器融合,但对于我们的知识,KSWF是支持自我校准的首先。我们的模拟和实际数据测试验证了,可以使用不同运动的机会主义地标的观察来完全校准相机-IMU系统。实际数据测试确认了先前的典故,即保持状态矢量的地标可以弥补静止漂移,并显示基于关键帧的方案是替代治疗方法。
translated by 谷歌翻译
在多传感器数据融合的背景下,我们检查时间延迟估计或时间校准的问题。处理间隔和其他因素的差异通常导致不同传感器的测量更新之间的相对延迟。正确(最佳)数据融合要求需要预先知道或在线识别相对延迟。在文献中有几个最近的建议,可以使用递归,因果滤波器等延迟确定延长的卡尔曼滤波器(EKF)。我们仔细审查了该制定,并表明当延迟在滤波器状态向量中作为要估计的参数时,eKF(和相关算法)的结构存在基本问题。反过来,这些结构问题既容易发生递归过滤器偏置和不一致。我们的理论分析得到了仿真研究支持,这些研究表明了过滤性能方面的影响;虽然过滤噪声差异的调整可以减少不一致或发散的可能性,但仍然存在潜在的结构问题。我们提供简要建议,以便在避免标准滤波算法的缺点时维持递归过滤的计算效率。
translated by 谷歌翻译
A monocular visual-inertial system (VINS), consisting of a camera and a low-cost inertial measurement unit (IMU), forms the minimum sensor suite for metric six degreesof-freedom (DOF) state estimation. However, the lack of direct distance measurement poses significant challenges in terms of IMU processing, estimator initialization, extrinsic calibration, and nonlinear optimization. In this work, we present VINS-Mono: a robust and versatile monocular visual-inertial state estimator. Our approach starts with a robust procedure for estimator initialization and failure recovery. A tightly-coupled, nonlinear optimization-based method is used to obtain high accuracy visual-inertial odometry by fusing pre-integrated IMU measurements and feature observations. A loop detection module, in combination with our tightly-coupled formulation, enables relocalization with minimum computation overhead. We additionally perform four degrees-of-freedom pose graph optimization to enforce global consistency. We validate the performance of our system on public datasets and real-world experiments and compare against other state-of-the-art algorithms. We also perform onboard closed-loop autonomous flight on the MAV platform and port the algorithm to an iOS-based demonstration. We highlight that the proposed work is a reliable, complete, and versatile system that is applicable for different applications that require high accuracy localization. We open source our implementations for both PCs 1 and iOS mobile devices 2 .
translated by 谷歌翻译
安装在微空中车辆(MAV)上的地面穿透雷达是有助于协助人道主义陆地间隙的工具。然而,合成孔径雷达图像的质量取决于雷达天线的准确和精确运动估计以及与MAV产生信息性的观点。本文介绍了一个完整的自动空气缩进的合成孔径雷达(GPSAR)系统。该系统由空间校准和时间上同步的工业级传感器套件组成,使得在地面上方,雷达成像和光学成像。自定义任务规划框架允许在地上控制地上的Stripmap和圆形(GPSAR)轨迹的生成和自动执行,以及空中成像调查飞行。基于因子图基于Dual接收机实时运动(RTK)全局导航卫星系统(GNSS)和惯性测量单元(IMU)的测量值,以获得精确,高速平台位置和方向。地面真理实验表明,传感器时机为0.8美元,正如0.1美元的那样,定位率为1 kHz。与具有不确定标题初始化的单个位置因子相比,双位置因子配方可提高高达40%,批量定位精度高达59%。我们的现场试验验证了本地化准确性和精度,使得能够相干雷达测量和检测在沙子中埋入的雷达目标。这验证了作为鸟瞰着地图检测系统的潜力。
translated by 谷歌翻译
我们为腿部机器人提供了一个开源视觉惯性训练率(VILO)状态估计解决方案Cerberus,该机器人使用一组标准传感器(包括立体声摄像机,IMU,联合编码器,,imu,联合编码器)实时实时估算各个地形的位置和接触传感器。除了估计机器人状态外,我们还执行在线运动学参数校准并接触离群值拒绝以大大减少位置漂移。在各种室内和室外环境中进行的硬件实验验证了Cerberus中的运动学参数可以将估计的漂移降低到长距离高速运动中的1%以下。我们的漂移结果比文献中报道的相同的一组传感器组比任何其他状态估计方法都要好。此外,即使机器人经历了巨大的影响和摄像头遮挡,我们的状态估计器也表现良好。状态估计器的实现以及用于计算我们结果的数据集,可在https://github.com/shuoyangrobotics/cerberus上获得。
translated by 谷歌翻译
本文为自动驾驶车辆提供了基于激光雷达的同时定位和映射(SLAM)。研究了来自地标传感器的数据和自适应卡尔曼滤波器(KF)中的带状惯性测量单元(IMU)加上系统的可观察性。除了车辆的状态和具有里程碑意义的位置外,自我调整过滤器还估计IMU校准参数以及测量噪声的协方差。流程噪声,状态过渡矩阵和观察灵敏度矩阵的离散时间协方差矩阵以封闭形式得出,使其适合实时实现。检查3D SLAM系统的可观察性得出的结论是,该系统在地标对准的几何条件下仍然可以观察到。
translated by 谷歌翻译
We propose AstroSLAM, a standalone vision-based solution for autonomous online navigation around an unknown target small celestial body. AstroSLAM is predicated on the formulation of the SLAM problem as an incrementally growing factor graph, facilitated by the use of the GTSAM library and the iSAM2 engine. By combining sensor fusion with orbital motion priors, we achieve improved performance over a baseline SLAM solution. We incorporate orbital motion constraints into the factor graph by devising a novel relative dynamics factor, which links the relative pose of the spacecraft to the problem of predicting trajectories stemming from the motion of the spacecraft in the vicinity of the small body. We demonstrate the excellent performance of AstroSLAM using both real legacy mission imagery and trajectory data courtesy of NASA's Planetary Data System, as well as real in-lab imagery data generated on a 3 degree-of-freedom spacecraft simulator test-bed.
translated by 谷歌翻译
Autonomous Micro Aerial Vehicles are deployed for a variety tasks including surveillance and monitoring. Perching and staring allow the vehicle to monitor targets without flying, saving battery power and increasing the overall mission time without the need to frequently replace batteries. This paper addresses the Active Visual Perching (AVP) control problem to autonomously perch on inclined surfaces up to $90^\circ$. Our approach generates dynamically feasible trajectories to navigate and perch on a desired target location, while taking into account actuator and Field of View (FoV) constraints. By replanning in mid-flight, we take advantage of more accurate target localization increasing the perching maneuver's robustness to target localization or control errors. We leverage the Karush-Kuhn-Tucker (KKT) conditions to identify the compatibility between planning objectives and the visual sensing constraint during the planned maneuver. Furthermore, we experimentally identify the corresponding boundary conditions that maximizes the spatio-temporal target visibility during the perching maneuver. The proposed approach works on-board in real-time with significant computational constraints relying exclusively on cameras and an Inertial Measurement Unit (IMU). Experimental results validate the proposed approach and shows the higher success rate as well as increased target interception precision and accuracy with respect to a one-shot planning approach, while still retaining aggressive capabilities with flight envelopes that include large excursions from the hover position on inclined surfaces up to 90$^\circ$, angular speeds up to 750~deg/s, and accelerations up to 10~m/s$^2$.
translated by 谷歌翻译
Visual Inertial Odometry (VIO) is the problem of estimating a robot's trajectory by combining information from an inertial measurement unit (IMU) and a camera, and is of great interest to the robotics community. This paper develops a novel Lie group symmetry for the VIO problem and applies the recently proposed equivariant filter. The symmetry is shown to be compatible with the invariance of the VIO reference frame, lead to exact linearisation of bias-free IMU dynamics, and provide equivariance of the visual measurement function. As a result, the equivariant filter (EqF) based on this Lie group is a consistent estimator for VIO with lower linearisation error in the propagation of state dynamics and a higher order equivariant output approximation than standard formulations. Experimental results on the popular EuRoC and UZH FPV datasets demonstrate that the proposed system outperforms other state-of-the-art VIO algorithms in terms of both speed and accuracy.
translated by 谷歌翻译
We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints and actuator saturation. The planned trajectory of flat output is transformed to state trajectory in real-time with consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The effectiveness of the proposed framework is demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10m/s, typical tail-sitter maneuvers (transition, level flight and loiter) with speed up to 20m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban Eight) with acceleration up to 2.5g.
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
该论文提出了两种控制方法,用于用微型四轮驱动器进行反弹式操纵。首先,对专门为反转设计设计的现有前馈控制策略进行了修订和改进。使用替代高斯工艺模型的贝叶斯优化通过在模拟环境中反复执行翻转操作来找到最佳运动原语序列。第二种方法基于闭环控制,它由两个主要步骤组成:首先,即使在模型不确定性的情况下,自适应控制器也旨在提供可靠的参考跟踪。控制器是通过通过测量数据调整的高斯过程来增强无人机的标称模型来构建的。其次,提出了一种有效的轨迹计划算法,该算法仅使用二次编程来设计可行的轨迹为反弹操作设计。在模拟和使用BitCraze Crazyflie 2.1四肢旋转器中对两种方法进行了分析。
translated by 谷歌翻译
与单个IMU相比,多个刚性连接的惯性测量单元(IMU)传感器提供了更丰富的数据流。最先进的方法遵循IMU测量的概率模型,基于在贝叶斯框架下组合的错误的随机性质。但是,负担得起的低级IMU此外,由于其不受相应的概率模型所掩盖的缺陷而遭受了系统的错误。在本文中,我们提出了一种方法,即合并多个IMU(MIMU)传感器数据的最佳轴组成(BAC),以进行准确的3D置置估计,该数据通过从集合中动态选择最佳的IMU轴来考虑随机和系统误差所有可用的轴。我们在MIMU视觉惯性传感器上评估了我们的方法,并将方法的性能与MIMU数据融合的最新方法进行比较。我们表明,BAC的表现优于后者,并且在开放环路中的方向和位置估计都可以提高20%的精度,但需要适当的处理以保持获得的增益。
translated by 谷歌翻译
我们提供了一种基于因子图优化的多摄像性视觉惯性内径系统,该系统通过同时使用所有相机估计运动,同时保留固定的整体特征预算。我们专注于在挑战环境中的运动跟踪,例如狭窄的走廊,具有侵略性动作的黑暗空间,突然的照明变化。这些方案导致传统的单眼或立体声测量失败。在理论上,使用额外的相机跟踪运动,但它会导致额外的复杂性和计算负担。为了克服这些挑战,我们介绍了两种新的方法来改善多相机特征跟踪。首先,除了从一体相机移动到另一个相机时,我们连续地跟踪特征的代替跟踪特征。这提高了准确性并实现了更紧凑的因子图表示。其次,我们选择跨摄像机的跟踪功能的固定预算,以降低反向结束优化时间。我们发现,使用较小的信息性功能可以保持相同的跟踪精度。我们所提出的方法使用由IMU和四个摄像机(前立体网和两个侧面)组成的硬件同步装置进行广泛测试,包括:地下矿,大型开放空间,以及带狭窄楼梯和走廊的建筑室内设计。与立体声最新的视觉惯性内径测量方法相比,我们的方法将漂移率,相对姿势误差,高达80%的翻译和旋转39%降低。
translated by 谷歌翻译
Estimation algorithms, such as the sliding window filter, produce an estimate and uncertainty of desired states. This task becomes challenging when the problem involves unobservable states. In these situations, it is critical for the algorithm to ``know what it doesn't know'', meaning that it must maintain the unobservable states as unobservable during algorithm deployment. This letter presents general requirements for maintaining consistency in sliding window filters involving unobservable states. The value of these requirements when designing a navigation solution is experimentally shown within the context of visual-inertial SLAM making use of IMU preintegration.
translated by 谷歌翻译
在本文中,我们提出了用于滚动快门摄像机的概率连续时间视觉惯性频道(VIO)。连续的时轨迹公式自然促进异步高频IMU数据和运动延伸的滚动快门图像的融合。为了防止棘手的计算负载,提出的VIO是滑动窗口和基于密钥帧的。我们建议概率地将控制点边缘化,以保持滑动窗口中恒定的密钥帧数。此外,可以在我们的连续时间VIO中在线校准滚动快门相机的线曝光时间差(线延迟)。为了广泛检查我们的连续时间VIO的性能,对公共可用的WHU-RSVI,TUM-RSVI和Sensetime-RSVI Rolling快门数据集进行了实验。结果表明,提出的连续时间VIO显着优于现有的最新VIO方法。本文的代码库也将通过\ url {https://github.com/april-zju/ctrl-vio}开源。
translated by 谷歌翻译