我们提供了一种基于因子图优化的多摄像性视觉惯性内径系统,该系统通过同时使用所有相机估计运动,同时保留固定的整体特征预算。我们专注于在挑战环境中的运动跟踪,例如狭窄的走廊,具有侵略性动作的黑暗空间,突然的照明变化。这些方案导致传统的单眼或立体声测量失败。在理论上,使用额外的相机跟踪运动,但它会导致额外的复杂性和计算负担。为了克服这些挑战,我们介绍了两种新的方法来改善多相机特征跟踪。首先,除了从一体相机移动到另一个相机时,我们连续地跟踪特征的代替跟踪特征。这提高了准确性并实现了更紧凑的因子图表示。其次,我们选择跨摄像机的跟踪功能的固定预算,以降低反向结束优化时间。我们发现,使用较小的信息性功能可以保持相同的跟踪精度。我们所提出的方法使用由IMU和四个摄像机(前立体网和两个侧面)组成的硬件同步装置进行广泛测试,包括:地下矿,大型开放空间,以及带狭窄楼梯和走廊的建筑室内设计。与立体声最新的视觉惯性内径测量方法相比,我们的方法将漂移率,相对姿势误差,高达80%的翻译和旋转39%降低。
translated by 谷歌翻译
我们呈现HYBVIO,一种新的混合方法,用于利用基于优化的SLAM结合基于滤波的视觉惯性内径术(VIO)的混合方法。我们的方法的核心是强大的,独立的VIO,具有改进的IMU偏置建模,异常值抑制,实体性检测和特征轨道选择,可调于在嵌入式硬件上运行。使用松散耦合的SLAM模块实现了长期一致性。在学术基准中,我们的解决方案在所有类别中产生了出色的性能,特别是在实时用例中,我们优于最新的最先进。我们还展示了VIO使用自定义数据集对消费类硬件的车辆跟踪的可行性,并与当前商业诉讼替代品相比,表现出良好的性能。https://github.com/spectacularai/hybvio提供了Hybvio方法的开源实现
translated by 谷歌翻译
理想情况下,机器人应该以最大化关于其内部系统和外部操作环境的状态所获得的知识的方式移动。轨迹设计是一个具有挑战性的问题,从各种角度来看,从信息理论分析到基于倾斜的方法。最近,已经提出了基于可观察性的指标来找到能够快速准确的状态和参数估计的轨迹。这些方法的活力和功效尚未在文献中众所周知。在本文中,我们比较了两个最先进的方法,以便可观察性感知轨迹优化,并寻求增加重要的理论澄清和对其整体效力的宝贵讨论。为了评估,我们使用逼真的物理模拟器检查传感器到传感器外部自校准的代表性任务。我们还研究了这些算法的灵敏度,以改变易欣欣传感器测量的信息内容。
translated by 谷歌翻译
安装在微空中车辆(MAV)上的地面穿透雷达是有助于协助人道主义陆地间隙的工具。然而,合成孔径雷达图像的质量取决于雷达天线的准确和精确运动估计以及与MAV产生信息性的观点。本文介绍了一个完整的自动空气缩进的合成孔径雷达(GPSAR)系统。该系统由空间校准和时间上同步的工业级传感器套件组成,使得在地面上方,雷达成像和光学成像。自定义任务规划框架允许在地上控制地上的Stripmap和圆形(GPSAR)轨迹的生成和自动执行,以及空中成像调查飞行。基于因子图基于Dual接收机实时运动(RTK)全局导航卫星系统(GNSS)和惯性测量单元(IMU)的测量值,以获得精确,高速平台位置和方向。地面真理实验表明,传感器时机为0.8美元,正如0.1美元的那样,定位率为1 kHz。与具有不确定标题初始化的单个位置因子相比,双位置因子配方可提高高达40%,批量定位精度高达59%。我们的现场试验验证了本地化准确性和精度,使得能够相干雷达测量和检测在沙子中埋入的雷达目标。这验证了作为鸟瞰着地图检测系统的潜力。
translated by 谷歌翻译
现代视觉惯性导航系统(VINS)面临着实际部署中的一个关键挑战:他们需要在高度动态的环境中可靠且强大地运行。当前最佳解决方案仅根据对象类别的语义将动态对象过滤为异常值。这样的方法不缩放,因为它需要语义分类器来包含所有可能移动的对象类;这很难定义,更不用说部署。另一方面,许多现实世界的环境以墙壁和地面等平面形式表现出强大的结构规律,这也是至关重要的。我们呈现RP-VIO,一种单眼视觉惯性内径系统,可以利用这些平面的简单几何形状,以改善充满活力环境的鲁棒性和准确性。由于现有数据集具有有限数量的动态元素,因此我们还提供了一种高动态的光致态度合成数据集,用于更有效地对现代VINS系统的功能的评估。我们评估我们在该数据集中的方法,以及来自标准数据集的三个不同序列,包括两个真实的动态序列,并在最先进的单眼视觉惯性内径系统上显示出鲁棒性和准确性的显着提高。我们还显示在模拟中,通过简单的动态特征掩蔽方法改进。我们的代码和数据集是公开可用的。
translated by 谷歌翻译
本文解决了现场机器人动态运动下动态在线估计和3轴磁力计的硬铁和软铁偏置的动态在线估计和补偿问题,利用了3轴磁力计和3轴角度的偏置测量速率传感器。所提出的磁力计和角速度偏差估计器(MAVBE)利用了对经受角速度偏移的磁力计信号的非线性处理动态的15状态过程模型,同时估计9个磁力计偏置参数和3个角速率传感器偏置参数,在扩展卡尔曼过滤器框架。偏置参数局部可操作性在数值评估。偏置补偿信号与3轴加速度计信号一起用于估计偏置补偿磁力大地测量标题。与Chesapeake Bay,MD,MD,MD,MD,MD,MD,MD,MD,MD的数值模拟,实验室实验和全规模场试验中,评估了所提出的MAVBE方法的性能。对于所提出的Mavbe,(i)仪器态度不需要估计偏差,结果表明(ii)偏差是本地可观察的,(iii)偏差估计迅速收敛到真正的偏置参数,(iv)仅适用于适度的仪器偏压估计收敛需要激发,并且(v)对磁力计硬铁和柔软铁偏差的补偿显着提高了动态前线估计精度。
translated by 谷歌翻译
随着线提供额外的约束,利用线特征可以有助于提高基于点的单眼视觉惯性内径(VIO)系统的定位精度。此外,在人工环境中,一些直线彼此平行。在本文中,我们设计了一种基于点和直线的VIO系统,它将直线分成结构直线(即彼此平行的直线)和非结构直线。另外,与使用四个参数表示3D直线的正交表示不同,我们仅使用两个参数来最小化结构直线和非结构直线的表示。此外,我们设计了一种基于采样点的直线匹配策略,提高了直线匹配的效率和成功率。我们的方法的有效性在EUROC和TUM VI基准的公共数据集上验证,与其他最先进的算法相比。
translated by 谷歌翻译
恶劣天气的可靠运行对于部署安全自治车辆(AVS)至关重要。通过熔化来自标准AV传感器套件(即,Lidars,Cameras)的数据,可以实现鲁棒性和可靠性,其中天气强壮的传感器,例如毫米波雷达。批判性地,精确的传感器数据融合需要了解传感器对之间的刚体变换,这可以通过外部校准的过程来确定。已经为2D(平面)雷达传感器设计了许多外部校准算法 - 然而,最近开发的低成本3D毫米波雷达被设定为在许多应用中取代其2D对应物。在本文中,我们提出了一种连续时间3D雷达 - 相机外在校准算法,其利用雷达速度测量,并且与大多数现有技术不同,不需要专门的雷达逆向反射器存在于环境中。我们推出了我们配方的可观察性性质,并通过合成和现实世界实验证明了我们的算法的功效。
translated by 谷歌翻译
通过实现复杂场景实现长期漂移相机姿势估计的目标,我们提出了一种全球定位框架,融合了多层的视觉,惯性和全球导航卫星系统(GNSS)测量。不同于以前的松散和紧密耦合的方法,所提出的多层融合允许我们彻底校正视觉测量仪的漂移,并在GNSS降解时保持可靠的定位。特别地,通过融合GNSS的速度,在紧紧地集成的情况下,解决视觉测量测量测量测量率和偏差估计中的尺度漂移和偏差估计的问题的问题,惯性测量单元(IMU)的预集成以及紧密相机测量的情况下 - 耦合的方式。在外层中实现全局定位,其中局部运动进一步与GNSS位置和基于长期时期的过程以松散耦合的方式融合。此外,提出了一种专用的初始化方法,以保证所有状态变量和参数的快速准确估计。我们为室内和室外公共数据集提供了拟议框架的详尽测试。平均本地化误差减少了63%,而初始化精度与最先进的工程相比,促销率为69%。我们已将算法应用于增强现实(AR)导航,人群采购高精度地图更新等大型应用。
translated by 谷歌翻译
我们提出了一种雷达惯性内径测量的方法,其使用连续时间框架来熔断来自多个汽车雷达的熔丝测量和惯性测量单元(IMU)。不利的天气条件对雷达传感器的操作性能不同,与相机和激光器传感器不同,对雷达传感器的操作性能没有显着影响。雷达在这种情况下的鲁棒性和乘客车辆雷达的普遍普遍激励我们来看看雷达用于自我运动估计。连续时间轨迹表示不仅应用于实现异构和异步多传感器融合的框架,还应用于通过能够计算封闭形式的姿势及其衍生物来实现高效优化,并且在任何特定时间沿着弹道。我们将我们的连续时间估计与来自离散时间雷达 - 惯性内径型方法的方法进行比较,并表明我们的连续时间方法优于离散时间方法。据我们所知,这是第一次将连续时间框架应用于雷达惯性内径术。
translated by 谷歌翻译
由于其对环境变化的鲁棒性,视觉猛感的间接方法是受欢迎的。 ORB-SLAM2 \ CITE {ORBSLM2}是该域中的基准方法,但是,除非选择帧作为关键帧,否则它会消耗从未被重用的描述符。轻量级和高效,因为它跟踪相邻帧之间的关键点而不计算描述符。为此,基于稀疏光流提出了一种两个级粗到微小描述符独立的Keypoint匹配方法。在第一阶段,我们通过简单但有效的运动模型预测初始关键点对应,然后通过基于金字塔的稀疏光流跟踪鲁棒地建立了对应关系。在第二阶段,我们利用运动平滑度和末端几何形状的约束来改进对应关系。特别是,我们的方法仅计算关键帧的描述符。我们在\ texit {tum}和\ texit {icl-nuim} RGB-D数据集上测试Fastorb-Slam,并将其准确性和效率与九种现有的RGB-D SLAM方法进行比较。定性和定量结果表明,我们的方法实现了最先进的准确性,并且大约是ORB-SLAM2的两倍。
translated by 谷歌翻译
我们介绍了基于两种称为延迟边缘化的新技术的单眼视觉惯性径流系统和姿势图束调节。 DM-VIO使用动态重量进行光度束调节,可视于可视残留。我们采用边缘化,这是一种流行的策略,以保持更新时间约束,但它不易颠倒,连接变量的线性化点必须固定。为了克服这一点,我们提出了延迟边缘化:这个想法是维持第二个因素图,其中边缘化被延迟。这允许我们稍后再读这种延迟图,在新的和一致的线性化点之前产生更新的边缘化。此外,延迟边缘化使我们能够将IMU信息注入已经边缘化的状态。这是所提出的姿势图束调整的基础,我们用于IMU初始化。与先前的IMU初始化的工作相比,它能够捕获完整的光度不确定性,从而提高规模估计。为了应对最初的不可观察的规模,在IMU初始化完成后,我们将继续优化主系统中的比例和重力方向。我们在EUROC,TUM-VI和4SEASONS数据集中评估我们的系统,该数据集包括飞行无人机,大规模手持设备和汽车场景。由于建议的IMU初始化,我们的系统超过了视觉惯性内径测量仪的最新状态,即使仅使用单个摄像头和IMU的同时表现出立体惯性方法。该代码将在http://vision.in.tum.de/dm-vio发布
translated by 谷歌翻译
自主飞机的导航系统依赖于由套件的读数提供的读数来估计飞机状态。在固定翼车的情况下,传感器套件由三联脉的加速度计,陀螺仪和磁力计,全球导航卫星系统(GNSS)接收器和空中数据系统(皮托管,空气叶片,温度计和晴雨表)组成,并且通常由一个或多个数码相机补充。准确表示每个传感器的行为和错误源,以及摄像机生成的图像,在飞行模拟中是必不可少的,以及对新型惯性或视觉导航算法的评估,以及在低交换的情况下大小,重量和电源)飞机,其中传感器的质量和价格有限。本文为每个传感器提供了现实和可定制的模型,该传感器已被实现为开源C ++模拟。随着时间的推移提供了飞机状态的真正变化,模拟提供了所有传感器产生的误差的时间戳系列,以及地球表面的现实图像,类似于沿着指示的状态位置飞行的真正摄像机飞行的地面表面和态度。
translated by 谷歌翻译
结合同时定位和映射(SLAM)估计和动态场景建模可以高效地在动态环境中获得机器人自主权。机器人路径规划和障碍避免任务依赖于场景中动态对象运动的准确估计。本文介绍了VDO-SLAM,这是一种强大的视觉动态对象感知SLAM系统,用于利用语义信息,使得能够在场景中进行准确的运动估计和跟踪动态刚性物体,而无需任何先前的物体形状或几何模型的知识。所提出的方法识别和跟踪环境中的动态对象和静态结构,并将这些信息集成到统一的SLAM框架中。这导致机器人轨迹的高度准确估计和对象的全部SE(3)运动以及环境的时空地图。该系统能够从对象的SE(3)运动中提取线性速度估计,为复杂的动态环境中的导航提供重要功能。我们展示了所提出的系统对许多真实室内和室外数据集的性能,结果表明了对最先进的算法的一致和实质性的改进。可以使用源代码的开源版本。
translated by 谷歌翻译
众所周知,在ADAS应用中,需要良好的估计车辆的姿势。本文提出了一种鉴定的2.5D内径术,由此由横摆率传感器和四轮速度传感器衍生的平面内径测量由悬架的线性模型增强。虽然平面内径术的核心是在文献中已经理解的横摆率模型,但我们通过拟合二次传入信号,实现内插,推断和车辆位置的更精细的整合来增强这一点。我们通过DGPS / IMU参考的实验结果表明,该模型提供了与现有方法相比的高精度的内径估计。利用返回车辆参考点高度变化的传感器改变悬架配置,我们定义了车辆悬架的平面模型,从而增加了内径模型。我们提出了一个实验框架和评估标准,通过该标准评估了内径术的良好和与现有方法进行了比较。该测距模型旨在支持众所周知的低速环绕式摄像头系统。因此,我们介绍了一些应用程序结果,该应用结果显示使用所提出的内径术来查看和计算机视觉应用程序的性能提升
translated by 谷歌翻译
我们提出了一种准确而坚固的多模态传感器融合框架,Metroloc,朝着最极端的场景之一,大规模地铁车辆本地化和映射。 Metroloc在以IMU为中心的状态估计器上构建,以较轻耦合的方法紧密地耦合光检测和测距(LIDAR),视觉和惯性信息。所提出的框架由三个子模块组成:IMU Odometry,LiDar - 惯性内径术(LIO)和视觉惯性内径(VIO)。 IMU被视为主要传感器,从LIO和VIO实现了从LIO和VIO的观察,以限制加速度计和陀螺仪偏差。与以前的点LIO方法相比,我们的方法通过将线路和平面特征引入运动估计来利用更多几何信息。 VIO还通过使用两条线和点来利用环境结构信息。我们所提出的方法在具有维护车辆的长期地铁环境中广泛测试。实验结果表明,该系统比使用实时性能的最先进的方法更准确和强大。此外,我们开发了一系列虚拟现实(VR)应用,以实现高效,经济,互动的轨道车辆状态和轨道基础设施监控,已经部署到室外测试铁路。
translated by 谷歌翻译
我们在本文中介绍Raillomer,实现实时准确和鲁棒的内径测量和轨道车辆的测绘。 Raillomer从两个Lidars,IMU,火车车程和全球导航卫星系统(GNSS)接收器接收测量。作为前端,来自IMU / Royomer缩放组的估计动作De-Skews DeSoised Point云并为框架到框架激光轨道测量产生初始猜测。作为后端,配制了基于滑动窗口的因子图以共同优化多模态信息。另外,我们利用来自提取的轨道轨道和结构外观描述符的平面约束,以进一步改善对重复结构的系统鲁棒性。为了确保全局常见和更少的模糊映射结果,我们开发了一种两级映射方法,首先以本地刻度执行扫描到地图,然后利用GNSS信息来注册模块。该方法在聚集的数据集上广泛评估了多次范围内的数据集,并且表明Raillomer即使在大或退化的环境中也能提供排入量级定位精度。我们还将Raillomer集成到互动列车状态和铁路监控系统原型设计中,已经部署到实验货量交通铁路。
translated by 谷歌翻译
凭借在运动扫描系统生产的LIDAR点云注册的目的,我们提出了一种新颖的轨迹调整程序,可以利用重叠点云和关节集成之间所选可靠的3D点对应关系的自动提取。 (调整)与所有原始惯性和GNSS观察一起。这是使用紧密耦合的方式执行的动态网络方法来执行,这通过在传感器处的错误而不是轨迹等级来实现最佳补偿的轨迹。 3D对应关系被制定为该网络内的静态条件,并且利用校正的轨迹和可能在调整内确定的其他参数,以更高的精度生成注册点云。我们首先描述了选择对应关系以及将它们作为新观察模型作为动态网络插入的方法。然后,我们描述了对具有低成本MEMS惯性传感器的实用空气激光扫描场景中提出框架的性能进行评估。在进行的实验中,建议建立3D对应关系的方法在确定各种几何形状的点对点匹配方面是有效的,例如树木,建筑物和汽车。我们的结果表明,该方法提高了点云登记精度,否则在确定的平台姿态或位置(以标称和模拟的GNSS中断条件)中的错误受到强烈影响,并且可能仅使用总计的一小部分确定未知的触觉角度建立的3D对应数量。
translated by 谷歌翻译
本文提出了一种新型电镀摄像机的校准算法,尤其是多焦距配置,其中使用了几种类型的微透镜,仅使用原始图像。电流校准方法依赖于简化投影模型,使用重建图像的功能,或者需要每种类型的微透镜进行分离的校准。在多聚焦配置中,根据微透镜焦距,场景的相同部分将展示不同量的模糊。通常,使用具有最小模糊量的微图像。为了利用所有可用的数据,我们建议在新推出的模糊的模糊(BAP)功能的帮助下,在新的相机模型中明确地模拟Defocus模糊。首先,它用于检索初始相机参数的预校准步骤,而第二步骤,以表达在我们的单个优化过程中最小化的新成本函数。第三,利用它来校准微图像之间的相对模糊。它将几何模糊,即模糊圈链接到物理模糊,即点传播函数。最后,我们使用产生的模糊概况来表征相机的景深。实际数据对受控环境的定量评估展示了我们校准的有效性。
translated by 谷歌翻译
自由飞行机器人的应用范围从娱乐目的到航空航天应用。用于这种系统的控制算法需要基于传感器反馈准确地估计它们的状态。本文的目的是设计和验证一个轻型状态估计算法,用于自由飞行开放运动链,估计其质量中心及其姿势的状态。该研究而不是利用非线性动力学模型,提出了两个卡尔曼滤波器(KF)的级联结构,其依赖于自由落体多体系的弹道运动以及来自惯性测量单元(IMU)和编码器的反馈。在模拟中验证了多种算法,以模拟使用Simulink模拟实际情况。改变了几个不确定的物理参数,结果表明,所提出的估计器在跟踪性能和计算时间方面优于EKF和UKF。
translated by 谷歌翻译