我们在本文中重新审视语义场景(SSC),是预测3D场景的语义和占用表示的有用任务。此任务的许多方法始终基于用于保存本地场景结构的体蛋白化场景表示。然而,由于存在可见空体素,当网络更深时,这些方法总是遭受重型计算冗余,从而限制完成质量。为了解决这种困境,我们提出了我们为此任务的新型点体素聚集网络。首先,我们通过去除这些可见的空体素来将Voxized场景传输到点云,并采用深点流,以有效地从场景中捕获语义信息。同时,仅包含两个3D卷积层的轻重体素流保留了体蛋白化场景的局部结构。此外,我们设计一个各向异性体素聚合运算符,将结构细节从体素流融合到点流中,并通过语义标签来增强点流中的上采样过程的语义感知传播模块。我们展示了我们的模型在两个基准上超越了最先进的余量,只有深度图像作为输入。
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
由于其在各种领域的广泛应用,3D对象检测正在接受行业和学术界的增加。在本文中,我们提出了从点云的3D对象检测的基于角度基于卷曲区域的卷积神经网络(PV-RCNNS)。首先,我们提出了一种新颖的3D探测器,PV-RCNN,由两个步骤组成:Voxel-to-keyPoint场景编码和Keypoint-to-Grid ROI特征抽象。这两个步骤深入地将3D体素CNN与基于点的集合的集合进行了集成,以提取辨别特征。其次,我们提出了一个先进的框架,PV-RCNN ++,用于更高效和准确的3D对象检测。它由两个主要的改进组成:有效地生产更多代表性关键点的划分的提案中心策略,以及用于更好地聚合局部点特征的vectorpool聚合,具有更少的资源消耗。通过这两种策略,我们的PV-RCNN ++比PV-RCNN快2倍,同时还在具有150米* 150M检测范围内的大型Waymo Open DataSet上实现更好的性能。此外,我们提出的PV-RCNNS在Waymo Open DataSet和高竞争力的基蒂基准上实现最先进的3D检测性能。源代码可在https://github.com/open-mmlab/openpcdet上获得。
translated by 谷歌翻译
捕获不规则点云的局部和全局特征对于3D对象检测(3OD)至关重要。但是,主流3D探测器,例如,投票机及其变体,要么放弃池操作过程中的大量本地功能,要么忽略整个场景中的许多全球功能。本文探讨了新的模块,以同时学习积极服务3OD的场景点云的局部全球特征。为此,我们通过同时局部全球特征学习(称为3DLG-detector)提出了一个有效的3OD网络。 3DLG检测器有两个关键贡献。首先,它会开发一个动态点交互(DPI)模块,该模块可在合并过程中保留有效的本地特征。此外,DPI是可拆卸的,可以将其合并到现有的3OD网络中以提高其性能。其次,它开发了一个全局上下文聚合模块,以汇总编码器不同层的多尺度特征,以实现场景上下文意识。我们的方法在SUN RGB-D和扫描仪数据集的检测准确性和鲁棒性方面显示了13个竞争对手的进步。源代码将在出版物时提供。
translated by 谷歌翻译
点云完成任务旨在预测不完整的点云的缺失部分,并通过详细信息生成完整的点云。在本文中,我们提出了一个新颖的点云完成网络,即完成。具体而言,从具有不同分辨率的点云中学到了特征,该分辨率是从不完整输入中采样的,并根据几何结构转换为一系列\ textit {spots}。然后,提出了基于变压器的密集关系增强模块(DRA),以学习\ textit {spots}中的特征,并考虑这些\ textit {spots}之间的相关性。 DRA由点局部注意模块(PLA)和点密集的多尺度注意模块(PDMA)组成,其中PLA通过适应邻居的权重,PDMA Expolo the Local \ textit {spots}捕获本地信息。这些\ textit {spots}之间的全局关系以多尺度的密集连接方式。最后,由\ textit {spots}通过多分辨率点融合模块(MPF)预测完整形状,该模块(mpf)逐渐从\ textit {spots}中逐渐生成完整的点云,并基于这些生成的点进行更新\ textit {spots}云。实验结果表明,由于基于变压器的DRA可以从不完整的输入中学习表达性特征,并且MPF可以完全探索这些功能以预测完整的输入,因此我们的方法在很大程度上优于先进方法。
translated by 谷歌翻译
点云的语义分割,旨在为每个点分配语义类别,对3D场景的理解至关重要。尽管近年来取得了重大进展,但大多数现有方法仍然遭受对象级别的错误分类或边界级别的歧义。在本文中,我们通过深入探索被称为Geosegnet的点云的几何形状来提出一个强大的语义分割网络。我们的Geosegnet由一个基于多几何的编码器和边界引导的解码器组成。在编码器中,我们从多几何的角度开发了一个新的残差几何模块,以提取对象级特征。在解码器中,我们引入了一个对比边界学习模块,以增强边界点的几何表示。从几何编码器模型中受益,我们的GEOSEGNET可以在使两个或多个对象的相交(边界)清晰地确定对象的分割。从总体分割精度和对象边界清除方面,实验显示了我们方法对竞争对手的明显改善。代码可在https://github.com/chen-yuiyui/geosegnet上找到。
translated by 谷歌翻译
变压器在自然语言处理中的成功最近引起了计算机视觉领域的关注。由于能够学习长期依赖性,变压器已被用作广泛使用的卷积运算符的替代品。事实证明,这种替代者在许多任务中都取得了成功,其中几种最先进的方法依靠变压器来更好地学习。在计算机视觉中,3D字段还见证了使用变压器来增加3D卷积神经网络和多层感知器网络的增加。尽管许多调查都集中在视力中的变压器上,但由于与2D视觉相比,由于数据表示和处理的差异,3D视觉需要特别注意。在这项工作中,我们介绍了针对不同3D视觉任务的100多种变压器方法的系统和彻底审查,包括分类,细分,检测,完成,姿势估计等。我们在3D Vision中讨论了变形金刚的设计,该设计使其可以使用各种3D表示形式处理数据。对于每个应用程序,我们强调了基于变压器的方法的关键属性和贡献。为了评估这些方法的竞争力,我们将它们的性能与12个3D基准测试的常见非转化方法进行了比较。我们通过讨论3D视觉中变压器的不同开放方向和挑战来结束调查。除了提出的论文外,我们的目标是频繁更新最新的相关论文及其相应的实现:https://github.com/lahoud/3d-vision-transformers。
translated by 谷歌翻译
This paper focuses on semantic scene completion, a task for producing a complete 3D voxel representation of volumetric occupancy and semantic labels for a scene from a single-view depth map observation. Previous work has considered scene completion and semantic labeling of depth maps separately. However, we observe that these two problems are tightly intertwined. To leverage the coupled nature of these two tasks, we introduce the semantic scene completion network (SSCNet), an end-to-end 3D convolutional network that takes a single depth image as input and simultaneously outputs occupancy and semantic labels for all voxels in the camera view frustum. Our network uses a dilation-based 3D context module to efficiently expand the receptive field and enable 3D context learning. To train our network, we construct SUNCG -a manually created largescale dataset of synthetic 3D scenes with dense volumetric annotations. Our experiments demonstrate that the joint model outperforms methods addressing each task in isolation and outperforms alternative approaches on the semantic scene completion task. The dataset, code and pretrained model will be available online upon acceptance.
translated by 谷歌翻译
与卷积神经网络相比,最近开发的纯变压器架构已经实现了对点云学习基准的有希望的准确性。然而,现有点云变压器是计算昂贵的,因为它们在构建不规则数据时浪费了大量时间。要解决此缺点,我们呈现稀疏窗口注意(SWA)模块,以收集非空体素的粗粒颗粒特征,不仅绕过昂贵的不规则数据结构和无效的空体素计算,还可以获得线性计算复杂性到体素分辨率。同时,要收集关于全球形状的细粒度特征,我们介绍了相对的注意(RA)模块,更强大的自我关注变体,用于对象的刚性变换。我们配备了SWA和RA,我们构建了我们的神经结构,称为PVT,将两个模块集成到Point云学习的联合框架中。与以前的变压器和关注的模型相比,我们的方法平均达到了分类基准和10x推理加速的最高精度为94.0%。广泛的实验还有效地验证了PVT在部分和语义分割基准上的有效性(分别为86.6%和69.2%Miou)。
translated by 谷歌翻译
从预期的观点(例如范围视图(RV)和Bird's-eye-view(BEV))进行了云云语义细分。不同的视图捕获了点云的不同信息,因此彼此互补。但是,最近基于投影的点云语义分割方法通常会利用一种香草后期的融合策略来预测不同观点,因此未能从表示学习过程中从几何学角度探索互补信息。在本文中,我们引入了一个几何流动网络(GFNET),以探索以融合方式对准不同视图之间的几何对应关系。具体而言,我们设计了一个新颖的几何流量模块(GFM),以双向对齐并根据端到端学习方案下的几何关系跨不同观点传播互补信息。我们对两个广泛使用的基准数据集(Semantickitti和Nuscenes)进行了广泛的实验,以证明我们的GFNET对基于项目的点云语义分割的有效性。具体而言,GFNET不仅显着提高了每个单独观点的性能,而且还可以在所有基于投影的模型中取得最新的结果。代码可在\ url {https://github.com/haibo-qiu/gfnet}中获得。
translated by 谷歌翻译
We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN), for accurate 3D object detection from point clouds. Our proposed method deeply integrates both 3D voxel Convolutional Neural Network (CNN) and PointNet-based set abstraction to learn more discriminative point cloud features. It takes advantages of efficient learning and high-quality proposals of the 3D voxel CNN and the flexible receptive fields of the PointNet-based networks. Specifically, the proposed framework summarizes the 3D scene with a 3D voxel CNN into a small set of keypoints via a novel voxel set abstraction module to save follow-up computations and also to encode representative scene features. Given the highquality 3D proposals generated by the voxel CNN, the RoIgrid pooling is proposed to abstract proposal-specific features from the keypoints to the RoI-grid points via keypoint set abstraction with multiple receptive fields. Compared with conventional pooling operations, the RoI-grid feature points encode much richer context information for accurately estimating object confidences and locations. Extensive experiments on both the KITTI dataset and the Waymo Open dataset show that our proposed PV-RCNN surpasses state-of-the-art 3D detection methods with remarkable margins by using only point clouds. Code is available at https://github.com/open-mmlab/OpenPCDet.
translated by 谷歌翻译
在前景点(即物体)和室外激光雷达点云中的背景点之间通常存在巨大的失衡。它阻碍了尖端的探测器专注于提供信息的区域,以产生准确的3D对象检测结果。本文提出了一个新的对象检测网络,该对象检测网络通过称为PV-RCNN ++的语义点 - 素voxel特征相互作用。与大多数现有方法不同,PV-RCNN ++探索了语义信息,以增强对象检测的质量。首先,提出了一个语义分割模块,以保留更具歧视性的前景关键。这样的模块将指导我们的PV-RCNN ++在关键区域集成了更多与对象相关的点和体素特征。然后,为了使点和体素有效相互作用,我们利用基于曼哈顿距离的体素查询来快速采样关键点周围的体素特征。与球查询相比,这种体素查询将降低从O(N)到O(K)的时间复杂性。此外,为了避免仅学习本地特征,基于注意力的残留点网模块旨在扩展接收场,以将相邻的素素特征适应到关键点中。 Kitti数据集的广泛实验表明,PV-RCNN ++达到81.60 $ \%$,40.18 $ \%$,68.21 $ \%$ \%$ 3D地图在汽车,行人和骑自行车的人方面,可以在州,甚至可以在州立骑行者,甚至更好地绩效-艺术。
translated by 谷歌翻译
3D点云的卷积经过广泛研究,但在几何深度学习中却远非完美。卷积的传统智慧在3D点之间表现出特征对应关系,这是对差的独特特征学习的内在限制。在本文中,我们提出了自适应图卷积(AGCONV),以供点云分析的广泛应用。 AGCONV根据其动态学习的功能生成自适应核。与使用固定/各向同性核的解决方案相比,AGCONV提高了点云卷积的灵活性,有效,精确地捕获了不同语义部位的点之间的不同关系。与流行的注意力体重方案不同,AGCONV实现了卷积操作内部的适应性,而不是简单地将不同的权重分配给相邻点。广泛的评估清楚地表明,我们的方法优于各种基准数据集中的点云分类和分割的最新方法。同时,AGCONV可以灵活地采用更多的点云分析方法来提高其性能。为了验证其灵活性和有效性,我们探索了基于AGCONV的完成,DeNoing,Upsmpling,注册和圆圈提取的范式,它们与竞争对手相当甚至优越。我们的代码可在https://github.com/hrzhou2/adaptconv-master上找到。
translated by 谷歌翻译
点云的语义分割通过密集预测每个点的类别来产生对场景的全面理解。由于接收场的一致性,点云的语义分割对于多受感受性场特征的表达仍然具有挑战性,这会导致对具有相似空间结构的实例的错误分类。在本文中,我们提出了一个植根于扩张图特征聚集(DGFA)的图形卷积网络DGFA-NET,该图由通过金字塔解码器计算出的多基质聚集损失(Maloss)引导。为了配置多受感受性字段特征,将建议的扩张图卷积(DGCONV)作为其基本构建块,旨在通过捕获带有各种接收区域的扩张图来汇总多尺度特征表示。通过同时考虑用不同分辨率的点集作为计算碱基的点集惩罚接收场信息,我们引入了由Maloss驱动的金字塔解码器,以了解接受田间的多样性。结合这两个方面,DGFA-NET显着提高了具有相似空间结构的实例的分割性能。 S3DIS,ShapenetPart和Toronto-3D的实验表明,DGFA-NET优于基线方法,实现了新的最新细分性能。
translated by 谷歌翻译
Scene understanding is a major challenge of today's computer vision. Center to this task is image segmentation, since scenes are often provided as a set of pictures. Nowadays, many such datasets also provide 3D geometry information given as a 3D point cloud acquired by a laser scanner or a depth camera. To exploit this geometric information, many current approaches rely on both a 2D loss and 3D loss, requiring not only 2D per pixel labels but also 3D per point labels. However obtaining a 3D groundtruth is challenging, time-consuming and error-prone. In this paper, we show that image segmentation can benefit from 3D geometric information without requiring any 3D groundtruth, by training the geometric feature extraction with a 2D segmentation loss in an end-to-end fashion. Our method starts by extracting a map of 3D features directly from the point cloud by using a lightweight and simple 3D encoder neural network. The 3D feature map is then used as an additional input to a classical image segmentation network. During training, the 3D features extraction is optimized for the segmentation task by back-propagation through the entire pipeline. Our method exhibits state-of-the-art performance with much lighter input dataset requirements, since no 3D groundtruth is required.
translated by 谷歌翻译
Point cloud completion is a generation and estimation issue derived from the partial point clouds, which plays a vital role in the applications in 3D computer vision. The progress of deep learning (DL) has impressively improved the capability and robustness of point cloud completion. However, the quality of completed point clouds is still needed to be further enhanced to meet the practical utilization. Therefore, this work aims to conduct a comprehensive survey on various methods, including point-based, convolution-based, graph-based, and generative model-based approaches, etc. And this survey summarizes the comparisons among these methods to provoke further research insights. Besides, this review sums up the commonly used datasets and illustrates the applications of point cloud completion. Eventually, we also discussed possible research trends in this promptly expanding field.
translated by 谷歌翻译
虽然基于点的网络被证明是3D点云建模的准确性,但它们仍然落在3D检测中基于体素的竞争对手后面。我们观察到,用于下采样点的主要集合抽象设计可以保持太多的不重要背景信息,可以影响检测对象的特征学习。为了解决这个问题,我们提出了一种名为语义增强集抽象(SASA)的新型集抽象方法。从技术上讲,我们首先将二进制分段模块添加为侧面输出,以帮助识别前景点。基于估计的点亮前景分数,我们提出了一种语义引导的点采样算法,帮助在下采样期间保持更重要的前景点。在实践中,SASA显示有效地识别与前景对象相关的有价值的点,并改善基于点的3D检测特征学习。此外,它是一种易于插入式模块,能够提升各种基于点的探测器,包括单级和两级的探测器。对流行的基蒂和NUSCENES数据集的广泛实验验证了SASA的优越性,提升基于点的检测模型,以达到最先进的基于体素的方法。
translated by 谷歌翻译
准确的轨道位置是铁路支持驱动系统的重要组成部分,用于安全监控。激光雷达可以获得携带铁路环境的3D信息的点云,特别是在黑暗和可怕的天气条件下。在本文中,提出了一种基于3D点云的实时轨识别方法来解决挑战,如无序,不均匀的密度和大量点云的挑战。首先呈现Voxel Down-采样方法,用于铁路点云的密度平衡,并且金字塔分区旨在将3D扫描区域划分为具有不同卷的体素。然后,开发了一个特征编码模块以找到最近的邻点并聚合它们的局部几何特征。最后,提出了一种多尺度神经网络以产生每个体素和轨道位置的预测结果。该实验是在铁路的3D点云数据的9个序列下进行的。结果表明,该方法在检测直,弯曲和其他复杂的拓扑轨道方面具有良好的性能。
translated by 谷歌翻译
LIDAR传感器对于自动驾驶汽车和智能机器人的感知系统至关重要。为了满足现实世界应用程序中的实时要求,有必要有效地分割激光扫描。以前的大多数方法将3D点云直接投影到2D球形范围图像上,以便它们可以利用有效的2D卷积操作进行图像分割。尽管取得了令人鼓舞的结果,但在球形投影中,邻里信息尚未保存得很好。此外,在单个扫描分割任务中未考虑时间信息。为了解决这些问题,我们提出了一种新型的语义分割方法,用于元素rangeseg的激光雷达序列,其中引入了新的范围残差图像表示以捕获空间时间信息。具体而言,使用元内核来提取元特征,从而减少了2D范围图像坐标输入和3D笛卡尔坐标输出之间的不一致。有效的U-NET主链用于获得多尺度功能。此外,特征聚合模块(FAM)增强了范围通道的作用,并在不同级别上汇总特征。我们已经进行了广泛的实验,以评估semantickitti和semanticposs。有希望的结果表明,我们提出的元rangeseg方法比现有方法更有效。我们的完整实施可在https://github.com/songw-zju/meta-rangeseg上公开获得。
translated by 谷歌翻译
在本文中,我们提出了一个全面的点云语义分割网络,该网络汇总了本地和全球多尺度信息。首先,我们提出一个角度相关点卷积(ACPCONV)模块,以有效地了解点的局部形状。其次,基于ACPCONV,我们引入了局部多规模拆分(MSS)块,该块从一个单个块中连接到一个单个块中的特征,并逐渐扩大了接受场,这对利用本地上下文是有益的。第三,受HRNET的启发,在2D图像视觉任务上具有出色的性能,我们构建了一个针对Point Cloud的HRNET,以学习全局多尺度上下文。最后,我们介绍了一种融合多分辨率预测并进一步改善点云语义分割性能的点上的注意融合方法。我们在几个基准数据集上的实验结果和消融表明,与现有方法相比,我们提出的方法有效,能够实现最先进的性能。
translated by 谷歌翻译