通过确保学习算法中的差异隐私,可以严格降低大型模型记忆敏感培训数据的风险。在本文中,我们为此目的研究了两种算法,即DP-SGD和DP-NSGD,它们首先剪辑或归一化\ textIt \ textIt {每样本}梯度以绑定灵敏度,然后添加噪声以使精确信息混淆。我们通过两个常见的假设分析了非凸优化设置中这两种算法的收敛行为,并实现了$ \ nathcal {o} \ left(\ sqrt [4] {\ frac {\ frac {d \ log(1/\ delta) )} {n^2 \ epsilon^2}} \ right)$ $ d $ - 二维模型,$ n $ samples和$(\ epsilon,\ delta)$ - dp,它改进了以前的改进在较弱的假设下的界限。具体而言,我们在DP-NSGD中引入了一个正规化因素,并表明它对融合证明至关重要,并巧妙地控制了偏见和噪声权衡。我们的证明故意处理针对私人环境指定的按样本梯度剪辑和标准化。从经验上讲,我们证明这两种算法达到了相似的最佳准确性,而DP-NSGD比DP-SGD更容易调整,因此在计算调整工作时可能有助于进一步节省隐私预算。
translated by 谷歌翻译
Privacy in AI remains a topic that draws attention from researchers and the general public in recent years. As one way to implement privacy-preserving AI, differentially private learning is a framework that enables AI models to use differential privacy (DP). To achieve DP in the learning process, existing algorithms typically limit the magnitude of gradients with a constant clipping, which requires carefully tuned due to its significant impact on model performance. As a solution to this issue, latest works NSGD and Auto-S innovatively propose to use normalization instead of clipping to avoid hyperparameter tuning. However, normalization-based approaches like NSGD and Auto-S rely on a monotonic weight function, which imposes excessive weight on small gradient samples and introduces extra deviation to the update. In this paper, we propose a Differentially Private Per-Sample Adaptive Clipping (DP-PSAC) algorithm based on a non-monotonic adaptive weight function, which guarantees privacy without the typical hyperparameter tuning process of using a constant clipping while significantly reducing the deviation between the update and true batch-averaged gradient. We provide a rigorous theoretical convergence analysis and show that with convergence rate at the same order, the proposed algorithm achieves a lower non-vanishing bound, which is maintained over training iterations, compared with NSGD/Auto-S. In addition, through extensive experimental evaluation, we show that DP-PSAC outperforms or matches the state-of-the-art methods on multiple main-stream vision and language tasks.
translated by 谷歌翻译
Privacy noise may negate the benefits of using adaptive optimizers in differentially private model training. Prior works typically address this issue by using auxiliary information (e.g., public data) to boost the effectiveness of adaptive optimization. In this work, we explore techniques to estimate and efficiently adapt to gradient geometry in private adaptive optimization without auxiliary data. Motivated by the observation that adaptive methods can tolerate stale preconditioners, we propose differentially private adaptive training with delayed preconditioners (DP^2), a simple method that constructs delayed but less noisy preconditioners to better realize the benefits of adaptivity. Theoretically, we provide convergence guarantees for our method for both convex and non-convex problems, and analyze trade-offs between delay and privacy noise reduction. Empirically, we explore DP^2 across several real-world datasets, demonstrating that it can improve convergence speed by as much as 4x relative to non-adaptive baselines and match the performance of state-of-the-art optimization methods that require auxiliary data.
translated by 谷歌翻译
非凸优化的传统分析通常取决于平滑度的假设,即要求梯度为Lipschitz。但是,最近的证据表明,这种平滑度条件并未捕获一些深度学习目标功能的特性,包括涉及复发性神经网络和LSTM的函数。取而代之的是,他们满足了更轻松的状况,并具有潜在的无界光滑度。在这个轻松的假设下,从理论和经验上表明,倾斜的SGD比香草具有优势。在本文中,我们表明,在解决此类情况时,剪辑对于ADAM型算法是不可或缺的:从理论上讲,我们证明了广义标志GD算法可以获得与带有剪辑的SGD相似的收敛速率,但根本不需要显式剪辑。一端的这个算法家族恢复了符号,另一端与受欢迎的亚当算法非常相似。我们的分析强调了动量在分析符号类型和ADAM型算法中发挥作用的关键作用:它不仅降低了噪声的影响,因此在先前的符号分析中消除了大型迷你批次的需求显着降低了无界平滑度和梯度规范的影响。我们还将这些算法与流行的优化器进行了比较,在一组深度学习任务上,观察到我们可以在击败其他人的同时匹配亚当的性能。
translated by 谷歌翻译
在均匀的Lipschitzness的简单假设下,即每样本样本梯度均匀地界限的大多数先前的收敛结果是在均匀的私有随机梯度下降(DP-SGD)中得出的。在许多问题,例如使用高斯数据的线性回归中,此假设是不现实的。我们可以通过假设每个样本梯度具有\ textit {样品依赖性}上限,即每样本的Lipschitz常数,而它们本身可能是无限的,那么我们就会放松均匀的唇。当按样本Lipschitz常数具有有限的矩时,我们在凸函数和非凸函数上得出DP-SGD的新收敛结果。此外,我们还提供了针对DP-SGD中选择剪辑标准的原则指导,以使其满足我们轻松的Lipschitzness的凸设置,而无需在Lipschitz常数上做出分配假设。我们通过基准测试数据集的实验来验证建议的有效性。
translated by 谷歌翻译
每个例子梯度剪辑是一个关键算法步骤,可实现对深度学习模型的实用差异私有(DP)培训。但是,剪辑规范$ r $的选择对于在DP下实现高精度至关重要。我们提出了一个易于使用的替代品,称为Autoclipping,它消除了任何DP优化器(包括DP-SGD,DP-ADAM,DP-LAMB等)调整$ R $的需求。自动变体与现有的DP优化器一样私有和计算效率,但不需要DP特定的超参数,因此使DP培训与标准的非私人培训一样适合。我们在非凸vex设置中对自动DP-SGD进行了严格的融合分析,这表明它具有与标准SGD相匹配的渐近收敛速率。我们还展示了各种语言和视觉任务,这些任务自动剪辑优于或匹配最新的,并且可以轻松使用对现有代码库的最小更改。
translated by 谷歌翻译
我们研究了差异私有线性回归的问题,其中每个数据点都是从固定的下高斯样式分布中采样的。我们提出和分析了一个单次迷你批次随机梯度下降法(DP-AMBSSGD),其中每次迭代中的点都在没有替换的情况下进行采样。为DP添加了噪声,但噪声标准偏差是在线估计的。与现有$(\ epsilon,\ delta)$ - 具有子最佳错误界限的DP技术相比,DP-AMBSSGD能够在关键参数(如多维参数)(如多维参数)等方面提供几乎最佳的错误范围$,以及观测值的噪声的标准偏差$ \ sigma $。例如,当对$ d $二维的协变量进行采样时。从正常分布中,然后由于隐私而引起的DP-AMBSSGD的多余误差为$ \ frac {\ sigma^2 d} {n} {n}(1+ \ frac {d} {\ epsilon^2 n})$,即当样本数量$ n = \ omega(d \ log d)$,这是线性回归的标准操作制度时,错误是有意义的。相比之下,在此设置中现有有效方法的错误范围为:$ \ mathcal {o} \ big(\ frac {d^3} {\ epsilon^2 n^2} \ big)$,即使是$ \ sigma = 0 $。也就是说,对于常量的$ \ epsilon $,现有技术需要$ n = \ omega(d \ sqrt {d})$才能提供非平凡的结果。
translated by 谷歌翻译
联邦学习(FL)是大规模分布式学习的范例,它面临两个关键挑战:(i)从高度异构的用户数据和(ii)保护参与用户的隐私的高效培训。在这项工作中,我们提出了一种新颖的流动方法(DP-SCaffold)来通过将差异隐私(DP)约束结合到流行的脚手架算法中来解决这两个挑战。我们专注于有挑战性的环境,用户在没有任何可信中介的情况下与“诚实但奇怪的”服务器沟通,这需要确保隐私不仅可以访问最终模型的第三方,而且还要对服务器观察所有用户通信。使用DP理论的高级结果,我们建立了凸面和非凸面目标算法的融合。我们的分析清楚地突出了数据异质性下的隐私式折衷,并且当局部更新的数量和异质性水平增长时,展示了在最先进的算法DP-Fedivg上的DP-Scaffold的优越性。我们的数值结果证实了我们的分析,并表明DP-Scaffold在实践中提供了重大的收益。
translated by 谷歌翻译
自适应优化方法已成为许多机器学习任务的默认求解器。不幸的是,适应性的好处可能会在具有不同隐私的训练时降低,因为噪声增加了,以确保隐私会降低自适应预处理的有效性。为此,我们提出了ADADP,这是一个使用非敏感的侧面信息来预处梯度的一般框架,从而可以在私有设置中有效使用自适应方法。我们正式显示ADADPS减少了获得类似隐私保证所需的噪声量,从而提高了优化性能。从经验上讲,我们利用简单且随时可用的侧面信息来探索实践中ADADP的性能,与集中式和联合设置中的强大基线相比。我们的结果表明,ADADP平均提高了准确性7.7%(绝对) - 在大规模文本和图像基准上产生最先进的隐私性权衡权衡。
translated by 谷歌翻译
在本文中,我们研究了差异化的私人经验风险最小化(DP-erm)。已经表明,随着尺寸的增加,DP-MER的(最坏的)效用会减小。这是私下学习大型机器学习模型的主要障碍。在高维度中,某些模型的参数通常比其他参数更多的信息是常见的。为了利用这一点,我们提出了一个差异化的私有贪婪坐标下降(DP-GCD)算法。在每次迭代中,DP-GCD私人沿梯度(大约)最大条目执行坐标梯度步骤。从理论上讲,DP-GCD可以通过利用问题解决方案的结构特性(例如稀疏性或准方面的)来改善实用性,并在早期迭代中取得非常快速的进展。然后,我们在合成数据集和真实数据集上以数值说明。最后,我们描述了未来工作的有前途的方向。
translated by 谷歌翻译
我们在差分隐私(DP)的约束下,用重型数据研究随机凸优化。大多数关于此问题的事先工作仅限于损耗功能是Lipschitz的情况。相反,正如王,肖,德拉达斯和徐\ Cite {wangxdx20}所引入的那样,假设渐变的分布已涉及$ k $ --th时刻,我们研究了一般凸损失功能。我们在集中DP下提供了改善的上限,用于凸起的凸起和强凸损失功能。一路上,我们在纯粹和集中的DP下获得了私人平均估计的私有平均估计的新算法。最后,我们证明了私有随机凸性优化的近乎匹配的下限,具有强凸损失和平均估计,显示纯净和浓缩的DP之间的新分离。
translated by 谷歌翻译
当算法的内部状态\ emph {private}时,迭代随机学习算法的信息泄漏是什么?每个特定培训时期对通过已发布的模型泄漏的贡献是多少?我们研究了此问题的嘈杂梯度下降算法,并在整个训练过程中对r \'enyi差异隐私损失的\ emph {dynamics}进行建模。我们的分析跟踪了\ emph {tigh}绑定在r \'enyi差异上的一对概率分布之间的差异,而不是在相邻数据集中训练的模型的参数。我们证明,隐私损失对平稳且强烈凸出的损失函数的呈指数呈指数收敛,这是对组成定理的显着改进(通过在所有中间梯度计算中,其总价值高于其总价值来过度估计隐私损失)。对于Lipschitz,光滑且强烈凸出的损失功能,我们证明了最佳效用,具有较小的梯度复杂性,用于嘈杂的梯度下降算法。
translated by 谷歌翻译
在本文中,通过引入低噪声条件,我们研究了在随机凸出优化(SCO)的环境中,差异私有随机梯度下降(SGD)算法的隐私和效用(概括)表现。对于点心学习,我们建立了订单$ \ Mathcal {o} \ big(\ frac {\ sqrt {\ sqrt {d \ log(1/\ delta)}} {n \ epsilon} \ big)和$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \ \ \ \\ \ \ \ \ \ big(\ frac {\ frac {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ sqrt { Mathcal {o} \ big({n^{ - \ frac {1+ \ alpha} {2}}}}}}+\ frac {\ sqrt {d \ log(1/\ delta)}}} )$(\ epsilon,\ delta)$ - 差异化私有SGD算法,分别是较高的和$ \ alpha $ -h \'分别较旧的光滑损失,其中$ n $是样本尺寸,$ d $是维度。对于成对学习,受\ cite {lei2020sharper,lei2021Generalization}的启发,我们提出了一种基于梯度扰动的简单私人SGD算法,该算法满足$(\ epsilon,\ delta)$ - 差异性限制,并开发出了新颖的私密性,并且算法。特别是,我们证明我们的算法可以实现多余的风险利率$ \ MATHCAL {o} \ big(\ frac {1} {\ sqrt {n}}}+\ frac {\ frac {\ sqrt { delta)}}} {n \ epsilon} \ big)$带有梯度复杂性$ \ mathcal {o}(n)$和$ \ mathcal {o} \ big(n^{\ frac {\ frac {2- \ alpha} {1+ alpha} {1+ \ alpha}}}+n \ big)$,用于强烈平滑和$ \ alpha $ -h \'olde R平滑损失。此外,在低噪声环境中建立了更快的学习率,以实现平滑和非平滑损失。据我们所知,这是第一次实用分析,它提供了超过$ \ Mathcal {o} \ big(\ frac {1} {\ sqrt {\ sqrt {n}}+\ frac {\ sqrt {d sqrt {d \ sqrt {d \ sqrt { log(1/\ delta)}}} {n \ epsilon} \ big)$用于隐私提供成对学习。
translated by 谷歌翻译
我们考虑对重尾数据的随机凸优化,并保证成为私人(DP)。此问题的先前工作仅限于梯度下降(GD)方法,这对于大规模问题效率低下。在本文中,我们解决了此问题,并通过剪辑得出了私人随机方法的第一个高概率范围。对于一般凸问题,我们得出过多的人口风险$ \ tilde {o} \ left(\ frac {d^{1/7} \ sqrt {\ ln \ frac {(n \ epsilon) }}} {(n \ epsilon)^{2/7}}} \ right)$和$ \ tilde {o} \ left(\ frac {d^{1/7} \ ln \ ln \ frac {(n \ epsilon)^(n \ epsilon)^ 2} {\ beta d}} {(n \ epsilon)^{2/7}}} \ right)$分别在有限或无限的域假设下(此处$ n $是样本大小,$ d $是数据,$ \ beta $是置信度,$ \ epsilon $是私人级别)。然后,我们将分析扩展到强烈的凸情况和非平滑案例(可用于使用H $ \ ddot {\ text {o}} $ lder-lder-continuule梯度的通用光滑目标)。我们建立了新的超额风险界限,而没有有限的域名。在相应情况下,上面的结果比现有方法降低了多余的风险和梯度复杂性。进行数值实验以证明理论改进是合理的。
translated by 谷歌翻译
我们考虑使用迷你批量梯度进行差异隐私(DP)的培训模型。现有的最先进的差异私有随机梯度下降(DP-SGD)需要通过采样或洗机来获得最佳隐私/准确性/计算权衡的隐私放大。不幸的是,在重要的实际情况下,精确采样和洗牌的精确要求可能很难获得,特别是联邦学习(FL)。我们设计和分析跟随 - 正规的领导者(DP-FTRL)的DP变体,其比较(理论上和经验地)与放大的DP-SGD相比,同时允许更灵活的数据访问模式。DP-FTRL不使用任何形式的隐私放大。该代码可在https://github.com/google-Research/federated/tree/master/dp_ftrl和https://github.com/google-reesearch/dp-ftrl处获得。
translated by 谷歌翻译
在本文中,我们重新审视了私人经验风险最小化(DP-erm)和差异私有随机凸优化(DP-SCO)的问题。我们表明,来自统计物理学(Langevin Exfusion(LD))的经过良好研究的连续时间算法同时为DP-SCO和DP-SCO提供了最佳的隐私/实用性权衡,$ \ epsilon $ -DP和$ $ \ epsilon $ -DP和$ (\ epsilon,\ delta)$ - dp均用于凸和强烈凸损失函数。我们为LD提供新的时间和尺寸独立统一稳定性,并使用我们为$ \ epsilon $ -DP提供相应的最佳超额人口风险保证。 $ \ epsilon $ -DP的DP-SCO保证的一个重要属性是,它们将非私人最佳界限匹配为$ \ epsilon \与\ infty $。在此过程中,我们提供了各种技术工具,这些工具可能引起独立的关注:i)在两个相邻数据集上运行损失功能时,一个新的r \'enyi Divergence绑定了LD,ii)最后一个过多的经验风险范围迭代LD,类似于Shamir和Zhang的嘈杂随机梯度下降(SGD)和iii)的LD,对LD进行了两期多余的风险分析,其中第一阶段是当扩散在任何合理意义上都没有在任何合理意义上融合到固定分布时,在第二阶段扩散已收敛到吉布斯分布的变体。我们的普遍性结果至关重要地依赖于LD的动力学。当它融合到固定分布时,我们获得了$ \ epsilon $ -DP的最佳界限。当它仅在很短的时间内运行$ \ propto 1/p $时,我们在$(\ epsilon,\ delta)$ -DP下获得最佳界限。在这里,$ p $是模型空间的维度。
translated by 谷歌翻译
Deep neural networks have strong capabilities of memorizing the underlying training data, which can be a serious privacy concern. An effective solution to this problem is to train models with differential privacy, which provides rigorous privacy guarantees by injecting random noise to the gradients. This paper focuses on the scenario where sensitive data are distributed among multiple participants, who jointly train a model through federated learning (FL), using both secure multiparty computation (MPC) to ensure the confidentiality of each gradient update, and differential privacy to avoid data leakage in the resulting model. A major challenge in this setting is that common mechanisms for enforcing DP in deep learning, which inject real-valued noise, are fundamentally incompatible with MPC, which exchanges finite-field integers among the participants. Consequently, most existing DP mechanisms require rather high noise levels, leading to poor model utility. Motivated by this, we propose Skellam mixture mechanism (SMM), an approach to enforce DP on models built via FL. Compared to existing methods, SMM eliminates the assumption that the input gradients must be integer-valued, and, thus, reduces the amount of noise injected to preserve DP. Further, SMM allows tight privacy accounting due to the nice composition and sub-sampling properties of the Skellam distribution, which are key to accurate deep learning with DP. The theoretical analysis of SMM is highly non-trivial, especially considering (i) the complicated math of differentially private deep learning in general and (ii) the fact that the mixture of two Skellam distributions is rather complex, and to our knowledge, has not been studied in the DP literature. Extensive experiments on various practical settings demonstrate that SMM consistently and significantly outperforms existing solutions in terms of the utility of the resulting model.
translated by 谷歌翻译
差异化(DP)随机凸优化(SCO)在可信赖的机器学习算法设计中无处不在。本文研究了DP-SCO问题,该问题是从分布中采样并顺序到达的流媒体数据。我们还考虑了连续发布模型,其中与私人信息相关的参数已在每个新数据(通常称为在线算法)上更新和发布。尽管已经开发了许多算法,以实现不同$ \ ell_p $ norm几何的最佳多余风险,但是没有一个现有的算法可以适应流和持续发布设置。为了解决诸如在线凸优化和隐私保护的挑战,我们提出了一种在线弗兰克 - 沃尔夫算法的私人变体,并带有递归梯度,以减少差异,以更新和揭示每个数据上的参数。结合自适应差异隐私分析,我们的在线算法在线性时间中实现了最佳的超额风险,当$ 1 <p \ leq 2 $和最先进的超额风险达到了非私人较低的风险时,当$ 2 <p \ p \ $ 2 <p \ leq \ infty $。我们的算法也可以扩展到$ p = 1 $的情况,以实现几乎与维度无关的多余风险。虽然先前的递归梯度降低结果仅在独立和分布的样本设置中才具有理论保证,但我们在非平稳环境中建立了这样的保证。为了展示我们方法的优点,我们设计了第一个DP算法,用于具有对数遗憾的高维广义线性土匪。使用多种DP-SCO和DP-Bandit算法的比较实验表现出所提出的算法的功效和实用性。
translated by 谷歌翻译
随机一阶方法是训练大规模机器学习模型的标准。随机行为可能导致算法的特定运行导​​致高度次优的目标值,而通常证明理论保证是出于目标值的期望。因此,从理论上保证算法具有很高的可能性,这一点至关重要。非平滑随机凸优化的现有方法具有复杂的界限,其依赖性对置信度或对数为负功率,但在额外的假设下是高斯(轻尾)噪声分布的额外假设,这些噪声分布在实践中可能不存在。在我们的论文中,我们解决了这个问题,并得出了第一个高概率收敛的结果,并以对数依赖性对非平滑凸的随机优化问题的置信度依赖,并带有非Sub-Gaussian(重尾)噪声。为了得出我们的结果,我们建议针对两种随机方法进行梯度剪辑的新步骤规则。此外,我们的分析适用于使用H \“较旧连续梯度的通用平滑目标,对于这两种方法,我们都为强烈凸出问题提供了扩展。最后,我们的结果暗示我们认为的第一种(加速)方法也具有最佳的迭代。在所有制度中,Oracle的复杂性,第二个机制在非平滑设置中都是最佳的。
translated by 谷歌翻译
随机优化在最小化机器学习中的目标功能方面发现了广泛的应用,这激发了许多理论研究以了解其实际成功。大多数现有研究都集中在优化误差的收敛上,而随机优化的概括分析却落后了。在实践中经常遇到的非洞穴和非平滑问题的情况尤其如此。在本文中,我们初始化了对非凸和非平滑问题的随机优化的系统稳定性和概括分析。我们介绍了新型算法稳定性措施,并在人口梯度和经验梯度之间建立了定量联系,然后进一步扩展,以研究经验风险的莫罗(Moreau)膜之间的差距和人口风险的差距。据我们所知,尚未在文献中研究稳定性与概括之间的这些定量联系。我们引入了一类采样确定的算法,为此我们为三种稳定性度量而开发界限。最后,我们将这些讨论应用于随机梯度下降及其自适应变体的误差界限,我们在其中显示如何通过调整步骤大小和迭代次数来实现隐式正则化。
translated by 谷歌翻译