本文中描述的模型属于专为数据表示和降低尺寸而设计的非负矩阵分解方法的家族。除了保留数据阳性属性外,它还旨在在矩阵分解过程中保留数据结构。这个想法是在NMF成本函数中添加一个惩罚术语,以在原始数据点和转换数据点的成对相似性矩阵之间实现比例关系。新模型的解决方案涉及为系数矩阵得出新的参数化更新方案,这使得在用于群集和分类时可以提高还原数据的质量。将所提出的聚类算法与某些现有的基于NMF的算法以及应用于某些现实生活数据集时的某些基于多种学习的算法进行了比较。获得的结果显示了所提出的算法的有效性。
translated by 谷歌翻译
基于各种非负矩阵分解(NMF)方法为成本函数添加了新术语,以使模型适应特定任务,例如聚类或保留减少空间中的某些结构属性(例如,局部不变性)。附加的术语主要由高参数加权,以控制整体公式的平衡,以指导优化过程实现目标。结果是一种参数化的NMF方法。但是,NMF方法采用了无监督的方法来估计分解矩阵。因此,不能保证使用新的特征执行预测(例如分类)的能力。这项工作的目的是设计一个进化框架,以学习参数化NMF的超参数,并以监督的方式估算分解矩阵,以更适合分类问题。此外,我们声称,将基于NMF的算法分别应用于不同的类对,而不是将其应用于整个数据集,从而提高了矩阵分解过程的有效性。这导致训练具有不同平衡参数值的多个参数化的NMF算法。采用了交叉验证组合学习框架,并使用遗传算法来识别最佳参数值集。我们对真实和合成数据集进行的实验证明了所提出的方法的有效性。
translated by 谷歌翻译
由于巨大的未标记数据的出现,现在已经增加了更加关注无监督的功能选择。需要考虑使用更有效的顺序使用样品训练学习方法的样本和潜在效果的分布,以提高该方法的鲁棒性。自定步学习是考虑样本培训顺序的有效方法。在本研究中,通过整合自花枢学习和子空间学习框架来提出无监督的特征选择。此外,保留了局部歧管结构,并且特征的冗余受到两个正则化术语的约束。 $ l_ {2,1 / 2} $ - norm应用于投影矩阵,旨在保留歧视特征,并进一步缓解数据中噪声的影响。然后,提出了一种迭代方法来解决优化问题。理论上和实验证明了该方法的收敛性。将所提出的方法与九个现实世界数据集上的其他技术的算法进行比较。实验结果表明,该方法可以提高聚类方法的性能,优于其他比较算法。
translated by 谷歌翻译
学习遥感图像的歧管结构对于建模和理解过程是最重要的相关性,以及封装在减少一组信息特征中的高维度,以用于后续分类,回归或解密。歧管学习方法显示出优异的性能来处理高光谱图像(HSI)分析,但除非专门设计,否则它们不能提供明确的嵌入式地图,容易适用于采样超出数据。处理问题的常见假设是高维输入空间和(通常低)潜空间之间的转换是线性的。这是一种特别强烈的假设,特别是当由于数据的众所周知的非线性性质而处理高光谱图像时。为了解决这个问题,提出了一种基于高维模型表示(HDMR)的歧管学习方法,这使得能够将非线性嵌入功能呈现给潜伏空间的采样外部样本。将所提出的方法与其线性对应物一起进行比较,并在代表性齐谱图像的分类精度方面实现了有希望的性能。
translated by 谷歌翻译
Nonnegative Tucker Factorization (NTF) minimizes the euclidean distance or Kullback-Leibler divergence between the original data and its low-rank approximation which often suffers from grossly corruptions or outliers and the neglect of manifold structures of data. In particular, NTF suffers from rotational ambiguity, whose solutions with and without rotation transformations are equally in the sense of yielding the maximum likelihood. In this paper, we propose three Robust Manifold NTF algorithms to handle outliers by incorporating structural knowledge about the outliers. They first applies a half-quadratic optimization algorithm to transform the problem into a general weighted NTF where the weights are influenced by the outliers. Then, we introduce the correntropy induced metric, Huber function and Cauchy function for weights respectively, to handle the outliers. Finally, we introduce a manifold regularization to overcome the rotational ambiguity of NTF. We have compared the proposed method with a number of representative references covering major branches of NTF on a variety of real-world image databases. Experimental results illustrate the effectiveness of the proposed method under two evaluation metrics (accuracy and nmi).
translated by 谷歌翻译
多个内核聚类(MKC)致力于从一组基础内核中实现最佳信息融合。事实证明,构建精确和局部核矩阵在应用中具有至关重要的意义,因为不可靠的远距离相似性估计将降低群集的每种形式。尽管与全球设计的竞争者相比,现有的局部MKC算法表现出改善的性能,但其中大多数通过考虑{\ tau} - 最终的邻居来定位内核矩阵来定位内核矩阵。但是,这种粗糙的方式遵循了一种不合理的策略,即不同邻居的排名重要性是相等的,这在应用程序中是不切实际的。为了减轻此类问题,本文提出了一种新型的本地样品加权多核聚类(LSWMKC)模型。我们首先在内核空间中构建共识判别亲和力图,从而揭示潜在的局部结构。此外,学习亲和力图的最佳邻域内核具有自然稀疏特性和清晰的块对角结构。此外,LSWMKC立即优化了具有相应样品的不同邻居的适应性权重。实验结果表明,我们的LSWMKC具有更好的局部流形表示,并且优于现有内核或基于图的聚类算法算法。可以从https://github.com/liliangnudt/lswmkc公开访问LSWMKC的源代码。
translated by 谷歌翻译
多视图无监督的特征选择(MUF)已被证明是一种有效的技术,可降低多视图未标记数据的维度。现有方法假定所有视图都已完成。但是,多视图数据通常不完整,即,某些视图中显示了一部分实例,但并非所有视图。此外,学习完整的相似性图,作为现有MUFS方法中重要的有前途的技术,由于缺少的观点而无法实现。在本文中,我们提出了一个基于互补的和共识学习的不完整的多视图无监督的特征选择方法(C $^{2} $ IMUFS),以解决上述问题。具体而言,c $^{2} $ imufs将功能选择集成到扩展的加权非负矩阵分解模型中,配备了自适应学习视图和稀疏的$ \ ell_ {2,p} $ - norm-norm,它可以提供更好的提供适应性和灵活性。通过从不同视图得出的多个相似性矩阵的稀疏线性组合,介绍了互补学习引导的相似性矩阵重建模型,以在每个视图中获得完整的相似性图。此外,c $^{2} $ imufs学习了跨不同视图的共识聚类指示器矩阵,并将其嵌入光谱图术语中以保留本地几何结构。现实世界数据集的全面实验结果证明了与最新方法相比,C $^{2} $ IMUF的有效性。
translated by 谷歌翻译
张量分解是学习多通道结构和来自高维数据的异质特征的有效工具,例如多视图图像和多通道脑电图(EEG)信号,通常由张量表示。但是,大多数张量分解方法是线性特征提取技术,它们无法在高维数据中揭示非线性结构。为了解决此类问题,已经提出了许多算法,以同时执行线性和非线性特征提取。代表性算法是用于图像群集的图形正则非负矩阵分解(GNMF)。但是,正常的2阶图只能模拟对象的成对相似性,该对象无法充分利用样品的复杂结构。因此,我们提出了一种新型方法,称为HyperGraph Narodarized非负张量分解(HyperNTF),该方法利用超图来编码样品之间的复杂连接,并采用了与最终的典型多形(CP)分解模式相对应的因子矩阵,为低维度表示。关于合成歧管,现实世界图像数据集和脑电图信号的广泛实验,表明HyperNTF在降低,聚类和分类方面优于最先进的方法。
translated by 谷歌翻译
多视图子空间聚类传统上专注于集成异构特征描述以捕获更高维度信息。一种流行的策略是从不同视图生成常见的子空间,然后应用基于图形的方法来处理群集。但是,这些方法的性能仍然受到两个限制,即多视图融合模式以及融合过程与聚类任务之间的连接。为了解决这些问题,我们通过细粒度图形学习提出了一种新的多视图子空间聚类框架,可以在不同视图之间讲述本地结构之间的一致性,并比以前的重量规则更精细地集成所有视图。与文献中的其他模型不同,引入了点级图正规化和频谱聚类的重新介绍,以执行图形融合并将共享集群结构一起学习在一起。在五个真实数据集上进行了广泛的实验,表明该框架对SOTA算法具有可比性。
translated by 谷歌翻译
非负矩阵分解(NMF)广泛用于聚类,具有强大的解释性。在一般的NMF问题中,对称NMF是一个特殊的问题,它在图形聚类中起着重要作用,其中每个元素都测量数据点之间的相似性。大多数现有的对称NMF算法都需要因子矩阵为非负数,并且仅着眼于最大程度地减少原始矩阵之间的差距及其进行聚类的近似值,而无需考虑其他潜在的正则化项,从而产生更好的聚类。在本文中,我们探索以分解不必不需要的对称矩阵,并具有带有正则化项的有效分解算法以提高聚类性能。此外,提出了一个更普遍的框架来解决对称矩阵的对称矩阵分解问题,并在因子矩阵上限制了不同。
translated by 谷歌翻译
多视图聚类已进行了广泛的研究,以利用多源信息来提高聚类性能。通常,大多数现有作品通常通过某些相似性/距离指标(例如欧几里得距离)或学习的表示形式来计算N * n亲和力图,并探索跨视图的成对相关性。但是不幸的是,通常需要二次甚至立方复杂性,这使得在聚集largescale数据集方面遇到了困难。最近,通过选择具有K-均值的视图锚表演或通过对原始观测值进行直接矩阵分解来捕获多个视图中的数据分布。尽管取得了巨大的成功,但很少有人考虑了视图不足问题,因此隐含地认为,每个单独的观点都足以恢复群集结构。此外,无法同时发现潜在积分空间以及来自多个视图的共享群集结构。鉴于这一点,我们为快速多视图聚类(AIMC)提出了一个具有几乎线性复杂性的快速多视图聚类(AIMC)。具体而言,视图生成模型旨在重建来自潜在积分空间的视图观测值,并具有不同的适应性贡献。同时,具有正交性约束和群集分区的质心表示无缝构造以近似潜在的积分空间。开发了一种替代最小化算法来解决优化问题,事实证明,该问题具有线性时间复杂性W.R.T.样本量。与最新方法相比,在几个Realworld数据集上进行的广泛实验证实了所提出的AIMC方法的优越性。
translated by 谷歌翻译
随着数据采集技术的发展,多视图学习已成为一个热门话题。一些多视图学习方法假设多视图数据已经完成,这意味着所有实例都存在,但这太理想了。某些用于传递不完整多视图数据的基于张量的方法已经出现并取得了更好的结果。但是,仍然存在一些问题,例如使用传统的张量规范,这使计算高且无法处理样本外。为了解决这两个问题,我们提出了一种新的不完整的多视图学习方法。定义了一个新的张量规范来实现图形张量数据恢复。然后将恢复的图定于样品的一致的低维表示。此外,自适应权重配备了每种视图,以调整不同视图的重要性。与现有方法相比,我们的方法也不仅仅探讨视图之间的一致性,但也通过使用学习的投影矩阵获得了新样本的低维表示。基于不精确的增强Lagrange乘数(ALM)方法的有效算法旨在解决模型,并证明了收敛性。四个数据集的实验结果显示了我们方法的有效性。
translated by 谷歌翻译
Spectral clustering is an effective methodology for unsupervised learning. Most traditional spectral clustering algorithms involve a separate two-step procedure and apply the transformed new representations for the final clustering results. Recently, much progress has been made to utilize the non-negative feature property in real-world data and to jointly learn the representation and clustering results. However, to our knowledge, no previous work considers a unified model that incorporates the important multi-view information with those properties, which severely limits the performance of existing methods. In this paper, we formulate a novel clustering model, which exploits the non-negative feature property and, more importantly, incorporates the multi-view information into a unified joint learning framework: the unified multi-view orthonormal non-negative graph based clustering framework (Umv-ONGC). Then, we derive an effective three-stage iterative solution for the proposed model and provide analytic solutions for the three sub-problems from the three stages. We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features. Extensive experiments on three benchmark data sets demonstrate the effectiveness of the proposed method.
translated by 谷歌翻译
尽管以前基于图的多视图聚类算法已经取得了重大进展,但其中大多数仍面临三个限制。首先,他们经常遭受高计算复杂性的困扰,这限制了他们在大规模场景中的应用。其次,他们通常在单视图级别或视图传感级别上执行图形学习,但经常忽略单视图和共识图的联合学习的可能性。第三,其中许多人依靠$ k $ - 表示光谱嵌入的离散化,这些嵌入缺乏直接使用离散群集结构直接学习图形的能力。鉴于此,本文通过统一和离散的两部分图(UDBGL)提出了一种有效的多视图聚类方法。具体而言,基于锚的子空间学习被合并为从多个视图中学习特定的二分化图,并利用双方图融合来学习具有自适应重量学习的视图 - 谐镜双分歧图。此外,施加Laplacian等级约束以确保融合的两分图具有离散的群集结构(具有特定数量的连接组件)。通过同时制定特定视图的两分图学习,视图 - 共表的两分图学习以及离散的群集结构学习到统一的目标函数中,然后设计有效的最小化算法来解决此优化问题,并直接实现离散的聚类解决方案解决方案解决方案解决方案解决方案。不需要其他分区,这特别是数据大小的线性时间复杂性。各种多视图数据集的实验证明了我们的UDBGL方法的鲁棒性和效率。
translated by 谷歌翻译
光谱型子空间聚类算法成功的关键点是寻求重建系数矩阵,这些矩阵可以忠实地揭示数据集的子空间结构。理想的重建系数矩阵应该具有两个属性:1)它是块对角线,每个块指示一个子空间; 2)每个块完全连接。尽管已经提出了各种光谱类型子空间聚类算法,但这些算法构建的重建系数矩阵中仍然存在一些缺陷。我们发现,归一化成员矩阵自然满足上述两个条件。因此,在本文中,我们设计了一种基本表示(IDR)算法来追求近似归一化成员矩阵的重建系数矩阵。 IDR设计了重建系数矩阵的新的IDEMTOTENT约束。通过将双随机约束结合在一起,可以直接实现与归一化构件矩阵封闭的系数矩阵。我们提出了用于解决IDR问题的优化算法,并分析其计算负担和收敛性。 IDR和相关算法之间的比较显示IDR的优势。对合成和现实世界数据集进行的大量实验证明,IDR是一种有效而有效的子空间聚类算法。
translated by 谷歌翻译
最近有一项激烈的活动在嵌入非常高维和非线性数据结构的嵌入中,其中大部分在数据科学和机器学习文献中。我们分四部分调查这项活动。在第一部分中,我们涵盖了非线性方法,例如主曲线,多维缩放,局部线性方法,ISOMAP,基于图形的方法和扩散映射,基于内核的方法和随机投影。第二部分与拓扑嵌入方法有关,特别是将拓扑特性映射到持久图和映射器算法中。具有巨大增长的另一种类型的数据集是非常高维网络数据。第三部分中考虑的任务是如何将此类数据嵌入中等维度的向量空间中,以使数据适合传统技术,例如群集和分类技术。可以说,这是算法机器学习方法与统计建模(所谓的随机块建模)之间的对比度。在论文中,我们讨论了两种方法的利弊。调查的最后一部分涉及嵌入$ \ mathbb {r}^ 2 $,即可视化中。提出了三种方法:基于第一部分,第二和第三部分中的方法,$ t $ -sne,UMAP和大节。在两个模拟数据集上进行了说明和比较。一个由嘈杂的ranunculoid曲线组成的三胞胎,另一个由随机块模型和两种类型的节点产生的复杂性的网络组成。
translated by 谷歌翻译
矩阵分解在机器学习中起重要作用,例如非负矩阵分解,主成分分析,字典学习等,但大多数研究旨在通过测量欧几里德距离来最小化损失,但在某些领域,角度距离已知对分析更为重要和至关重要。在本文中,我们通过向统一欧几里德和角度距离的因素添加限制来提出一种方法。但是,由于目标和约束的非凸起,优化的解决方案不容易获得。在本文中,我们提出了一般框架,以通过各种限制来系统地解决它的可提供的收敛保障。
translated by 谷歌翻译
多视图聚类(MVC)最佳地集成了来自不同视图的互补信息,以提高聚类性能。尽管在各种应用中证明了有希望的性能,但大多数现有方法都直接融合了多个预先指定的相似性,以学习聚类的最佳相似性矩阵,这可能会导致过度复杂的优化和密集的计算成本。在本文中,我们通过对齐方式最大化提出了晚期Fusion MVC,以解决这些问题。为此,我们首先揭示了现有K-均值聚类的理论联系以及基本分区和共识之一之间的对齐。基于此观察结果,我们提出了一种简单但有效的多视算法,称为LF-MVC-GAM。它可以从每个单独的视图中最佳地将多个源信息融合到分区级别,并最大程度地将共识分区与这些加权基础分区保持一致。这种对齐方式有助于整合分区级别信息,并通过充分简化优化过程来大大降低计算复杂性。然后,我们设计了另一个变体LF-MVC-LAM,以通过在多个分区空间之间保留局部内在结构来进一步提高聚类性能。之后,我们开发了两种三步迭代算法,以通过理论上保证的收敛来解决最终的优化问题。此外,我们提供了所提出算法的概括误差约束分析。对十八个多视图基准数据集进行了广泛的实验,证明了拟议的LF-MVC-GAM和LF-MVC-LAM的有效性和效率,范围从小到大型数据项不等。拟议算法的代码可在https://github.com/wangsiwei2010/latefusionalignment上公开获得。
translated by 谷歌翻译
非负矩阵分解(NMF)已被广泛用于学习数据的低维表示。但是,NMF对数据点的所有属性都同样关注,这不可避免地导致不准确的代表性。例如,在人面数据集中,如果图像在头上包含帽子,则应删除帽子,或者在矩阵分组期间应减少其对应属性的重要性。本文提出了一种名为熵权的NMF(EWNMF)的新型NMF,其为每个数据点的每个属性使用可优化的权重,以强调它们的重要性。通过向成本函数添加熵规范器来实现此过程,然后使用拉格朗日乘法器方法来解决问题。具有若干数据集的实验结果证明了该方法的可行性和有效性。我们在https://github.com/poisson-em/entropy-weighted-nmf提供我们的代码。
translated by 谷歌翻译
As a hot research topic, many multi-view clustering approaches are proposed over the past few years. Nevertheless, most existing algorithms merely take the consensus information among different views into consideration for clustering. Actually, it may hinder the multi-view clustering performance in real-life applications, since different views usually contain diverse statistic properties. To address this problem, we propose a novel Tensor-based Intrinsic Subspace Representation Learning (TISRL) for multi-view clustering in this paper. Concretely, the rank preserving decomposition is proposed firstly to effectively deal with the diverse statistic information contained in different views. Then, to achieve the intrinsic subspace representation, the tensor-singular value decomposition based low-rank tensor constraint is also utilized in our method. It can be seen that specific information contained in different views is fully investigated by the rank preserving decomposition, and the high-order correlations of multi-view data are also mined by the low-rank tensor constraint. The objective function can be optimized by an augmented Lagrangian multiplier based alternating direction minimization algorithm. Experimental results on nine common used real-world multi-view datasets illustrate the superiority of TISRL.
translated by 谷歌翻译