异常检测是一项具有挑战性的任务,经常在实际上出现所有工业和科学领域,从欺诈检测和数据质量监测到寻找罕见的疾病病例和寻找新物理学。大多数传统的异常检测方法,例如单级SVM和鲁棒自动编码器,是单级分类方法,即专注于将正常数据与空间的其余部分分开。这些方法基于正常和异常类别的可分离性的假设,随后不考虑任何异常的任何可用样本。尽管如此,在实际设置中,一些异常样品通常可用;但是,通常以平衡分类任务所需的量低,并且可以总是保持可分离的假设。这导致了重要的任务 - 将已知的异常样品掺入异常检测模型的训练程序中。在这项工作中,我们提出了一种新颖的模型 - 不可知论培训程序来解决这项任务。我们将单级分类重构为二进制分类问题,与伪异常样本区分开。通过将潜在分布的尾部进入模型,从标准化流动模型的低密度区域中抽出伪异常样本。这种方法允许容易地包括已知的异常进入任意分类器的训练过程。我们展示了我们的方法在一类问题上表现出可比的性能,最重要的是,在具有可变量的已知异常的任务上实现了可比或优越的结果。
translated by 谷歌翻译
异常检测旨在识别数据点,这些数据点显示了未标记数据集中大多数数据的系统偏差。一个普遍的假设是,可以使用干净的培训数据(没有异常),这在实践中通常会违反。我们提出了一种在存在与广泛模型兼容的未标记异常的情况下训练异常检测器的策略。这个想法是在更新模型参数时将二进制标签共同推断为每个基准(正常与异常)。受到异常暴露的启发(Hendrycks等人,2018年),该暴露考虑合成创建,标记为异常,我们因此使用了两个共享参数的损失的组合:一个用于正常参数,一个用于异常数据。然后,我们对参数和最可能(潜在)标签进行块坐标更新。我们在三个图像数据集,30个表格数据集和视频异常检测基准上使用几个主链模型进行了实验,对基线显示了一致且显着的改进。
translated by 谷歌翻译
我们考虑为移动机器人构建视觉异常检测系统的问题。标准异常检测模型是使用仅由非异常数据组成的大型数据集训练的。但是,在机器人技术应用中,通常可以使用(可能很少)的异常示例。我们解决了利用这些数据以通过与Real-NVP损失共同使辅助外离群损失损失共同使实际NVP异常检测模型的性能提高性能的问题。我们在新的数据集(作为补充材料)上进行定量实验,该数据集在室内巡逻方案中设计为异常检测。在不连接测试集中,我们的方法优于替代方案,并表明即使少数异常框架也可以实现重大的性能改进。
translated by 谷歌翻译
We consider the problem of anomaly detection in images, and present a new detection technique. Given a sample of images, all known to belong to a "normal" class (e.g., dogs), we show how to train a deep neural model that can detect out-of-distribution images (i.e., non-dog objects). The main idea behind our scheme is to train a multi-class model to discriminate between dozens of geometric transformations applied on all the given images. The auxiliary expertise learned by the model generates feature detectors that effectively identify, at test time, anomalous images based on the softmax activation statistics of the model when applied on transformed images. We present extensive experiments using the proposed detector, which indicate that our technique consistently improves all known algorithms by a wide margin.1 Unless otherwise mentioned, the use of the adjective "normal" is unrelated to the Gaussian distribution.32nd Conference on Neural Information Processing Systems (NIPS 2018),
translated by 谷歌翻译
异常检测(AD),将异常与正常数据分开,从安全性到医疗保健都有许多范围内的应用程序。尽管大多数以前的作品都被证明对具有完全或部分标记数据的案例有效,但由于标记对此任务特别乏味,因此设置在实践中较不常见。在本文中,我们专注于完全无监督的AD,其中包含正常样本和异常样本的整个培训数据集未标记。为了有效地解决这个问题,我们建议通过使用数据改进过程来提高接受自我监督表示的一类分类的鲁棒性。我们提出的数据完善方法基于单级分类器(OCCS)的集合,每个分类器均经过培训的训练数据子集。随着数据改进的改进,通过自我监督学习学到的表示的表示。我们在具有图像和表格数据的各种无监督的AD任务上演示了我们的方法。 CIFAR-10图像数据的异常比率为10% /甲状腺表格数据的2.5%异常比率,该方法的表现优于最先进的单级分类器,高于6.3 AUC和12.5平均精度 / 22.9 F1评分。 。
translated by 谷歌翻译
半监督异常检测旨在使用在正常数据上培训的模型来检测来自正常样本的异常。随着近期深度学习的进步,研究人员设计了高效的深度异常检测方法。现有作品通常使用神经网络将数据映射到更具内容性的表示中,然后应用异常检测算法。在本文中,我们提出了一种方法,DASVDD,它共同学习AutoEncoder的参数,同时最小化其潜在表示上的封闭超球的音量。我们提出了一个异常的分数,它是自动化器的重建误差和距离潜在表示中封闭边距中心的距离的组合。尽量减少这种异常的分数辅助我们在培训期间学习正常课程的潜在分布。包括异常分数中的重建错误确保DESVDD不受常见的极度崩溃问题,因为DESVDD模型不会收敛到映射到潜在表示中的恒定点的常量点。几个基准数据集上的实验评估表明,该方法优于常用的最先进的异常检测算法,同时在不同的异常类中保持鲁棒性能。
translated by 谷歌翻译
异常识别中的一个常见研究区域是基于纹理背景的工业图像异常检测。纹理图像的干扰和纹理异常的小型性是许多现有模型无法检测异常的主要原因。我们提出了一种异常检测策略,该策略根据上述问题结合了字典学习和归一流的流程。我们的方法增强了已经使用的两阶段异常检测方法。为了改善基线方法,这项研究增加了表示学习中的正常流程,并结合了深度学习和词典学习。在实验验证后,所有MVTEC AD纹理类型数据的改进算法超过了95 $ \%$检测精度。它显示出强大的鲁棒性。地毯数据的基线方法的检测准确性为67.9%。该文章已升级,将检测准确性提高到99.7%。
translated by 谷歌翻译
与许多其他任务一样,神经网络对于异常检测目的而言非常有效。但是,很少有深度学习模型适合于在表格数据集上检测异常。本文提出了一种新的方法来标记基于Tracin的异常,这是最初引入的出于明确目的而引入的影响度量。所提出的方法可以增加任何无监督的深度异常检测方法。我们使用变异自动编码器测试我们的方法,并表明训练点子样本对测试点的平均影响可以作为异常的代理。与最先进的方法相比,我们的模型被证明具有竞争力:它在医疗和网络安全表格基准数据上的检测准确性方面具有可比性或更好的性能。
translated by 谷歌翻译
在异常检测(AD)中,给出了识别测试样本是否异常,给出了正常样本的数据集。近期和有希望的广告方法依赖于深度生成模型,例如变形自动化器(VAES),用于对正常数据分布的无监督学习。在半监督广告(SSAD)中,数据还包括标记异常的小样本。在这项工作中,我们提出了两个用于SSAD培训VAES的两个变分方法。两种方法中的直观思路是将编码器训练到潜在向量之间的“分开”以进行正常和异常数据。我们表明,这个想法可以源于问题的原则概率制剂,并提出了简单有效的算法。我们的方法可以应用于各种数据类型,因为我们在从自然图像到天文学和医学的SSAD数据集上展示,可以与任何VAE模型架构相结合,并且自然与合奏相兼容。与未特定于特定数据类型的最先进的SSAD方法比较时,我们获得了异常值检测的显着改进。
translated by 谷歌翻译
在智能交通系统中,交通拥堵异常检测至关重要。运输机构的目标有两个方面:监视感兴趣领域的一般交通状况,并在异常拥堵状态下定位道路细分市场。建模拥塞模式可以实现这些目标,以实现全市道路的目标,相当于学习多元时间序列(MTS)的分布。但是,现有作品要么不可伸缩,要么无法同时捕获MTS中的空间信息。为此,我们提出了一个由数据驱动的生成方法组成的原则性和全面的框架,该方法可以执行可拖动的密度估计来检测流量异常。我们的方法在特征空间中的第一群段段,然后使用条件归一化流以在无监督的设置下在群集级别识别异常的时间快照。然后,我们通过在异常群集上使用内核密度估计器来识别段级别的异常。关于合成数据集的广泛实验表明,我们的方法在召回和F1得分方面显着优于几种最新的拥塞异常检测和诊断方法。我们还使用生成模型来采样标记的数据,该数据可以在有监督的环境中训练分类器,从而减轻缺乏在稀疏设置中进行异常检测的标记数据。
translated by 谷歌翻译
开放式视频异常检测(OpenVAD)旨在从视频数据中识别出异常事件,在测试中都存在已知的异常和新颖的事件。无监督的模型仅从普通视频中学到的模型适用于任何测试异常,但遭受高误报率的损失。相比之下,弱监督的方法可有效检测已知的异常情况,但在开放世界中可能会失败。我们通过将证据深度学习(EDL)和将流量(NFS)归一化为多个实例学习(MIL)框架来开发出一种新颖的OpenVAD问题的弱监督方法。具体而言,我们建议使用图形神经网络和三重态损失来学习训练EDL分类器的区分特征,在该特征中,EDL能够通过量化不确定性来识别未知异常。此外,我们制定了一种不确定性感知的选择策略,以获取清洁异常实例和NFS模块以生成伪异常。我们的方法通过继承无监督的NF和弱监督的MIL框架的优势来优于现有方法。多个现实世界视频数据集的实验结果显示了我们方法的有效性。
translated by 谷歌翻译
Semi-supervised anomaly detection is a common problem, as often the datasets containing anomalies are partially labeled. We propose a canonical framework: Semi-supervised Pseudo-labeler Anomaly Detection with Ensembling (SPADE) that isn't limited by the assumption that labeled and unlabeled data come from the same distribution. Indeed, the assumption is often violated in many applications - for example, the labeled data may contain only anomalies unlike unlabeled data, or unlabeled data may contain different types of anomalies, or labeled data may contain only 'easy-to-label' samples. SPADE utilizes an ensemble of one class classifiers as the pseudo-labeler to improve the robustness of pseudo-labeling with distribution mismatch. Partial matching is proposed to automatically select the critical hyper-parameters for pseudo-labeling without validation data, which is crucial with limited labeled data. SPADE shows state-of-the-art semi-supervised anomaly detection performance across a wide range of scenarios with distribution mismatch in both tabular and image domains. In some common real-world settings such as model facing new types of unlabeled anomalies, SPADE outperforms the state-of-the-art alternatives by 5% AUC in average.
translated by 谷歌翻译
深度异常检测已被证明是几个领域的有效和强大的方法。自我监督学习的引入极大地帮助了许多方法,包括异常检测,其中使用简单的几何变换识别任务。然而,由于它们缺乏更精细的特征,因此这些方法在细粒度问题上表现不佳,并且通常高度依赖于异常类型。在本文中,我们探讨了使用借口任务的自我监督异常检测的每个步骤。首先,我们介绍了专注于不同视觉线索的新型鉴别和生成任务。一部分拼图拼图任务侧重于结构提示,而在每个件上使用色调旋转识别进行比色法,并且执行部分重新染色任务。为了使重新着色任务更关注对象而不是在后台上关注,我们建议包括图像边界的上下文颜色信息。然后,我们介绍了一个新的分配检测功能,并与其他分配检测方法相比,突出了其更好的稳定性。随之而来,我们还试验不同的分数融合功能。最后,我们在具有经典对象识别的对象异常组成的综合异常检测协议上评估我们的方法,用细粒度分类和面部反欺骗数据集的局部分类和局部异常的样式异常。我们的模型可以更准确地学习使用这些自我监督任务的高度辨别功能。它优于最先进的最先进的相对误差改善对象异常,40%的面对反欺骗问题。
translated by 谷歌翻译
大多数异常检测算法主要集中于建模正常样品的分布并将异常视为异常值。但是,由于缺乏对异常的知识,该模型的判别性能可能不足。因此,应尽可能利用异常。但是,在训练过程中利用一些已知的异常情况可能会导致另一个问题,即模型可能会受到已知异常的偏见,并且未能概括地看不见异常。在本文中,我们旨在利用一些现有的异常情况,具有精心设计的明确指导的半孔学习策略,这可以增强可区分性,同时减轻由于已知异常不足引起的偏见问题。我们的模型基于两个核心设计:首先,找到一个明确的分离边界作为进一步的对比度学习的指导。具体而言,我们采用归一化流程来学习正常特征分布,然后找到一个明确的分离边界,靠近分布边缘。所获得的显式和紧凑的分离边界仅依赖于正常特征分布,因此可以减轻少数已知异常引起的偏置问题。其次,在显式分离边界的指导下学习更多的判别特征。开发了边界引导的半孔损耗,以将正常特征融合在一起,同时将异常特征推开以外的分离边界以外的边界区域。通过这种方式,我们的模型可以形成更明确,更歧视性的决策边界,以为已知和看不见的异常取得更好的结果,同时还保持高训练效率。对广泛使用的MVTECAD基准进行的广泛实验表明,该方法可实现新的最新结果,其性能为98.8%的图像级AUROC和99.4%的像素级AUROC。
translated by 谷歌翻译
我们如何检测异常:也就是说,与给定的一组高维数据(例如图像或传感器数据)显着不同的样品?这是众多应用程序的实际问题,也与使学习算法对意外输入更强大的目标有关。自动编码器是一种流行的方法,部分原因是它们的简单性和降低维度的能力。但是,异常评分函数并不适应正常样品范围内重建误差的自然变化,这阻碍了它们检测实际异常的能力。在本文中,我们从经验上证明了局部适应性对具有真实数据的实验中异常评分的重要性。然后,我们提出了新颖的自适应重建基于错误的评分方法,该方法根据潜在空间的重建误差的局部行为来适应其评分。我们表明,这改善了各种基准数据集中相关基线的异常检测性能。
translated by 谷歌翻译
检测与培训数据偏离的测试数据是安全和健壮的机器学习的核心问题。通过生成模型学到的可能性,例如,通过标准对数似然训练的归一流流量,作为异常得分的表现不佳。我们建议使用未标记的辅助数据集和概率异常得分进行异常检测。我们使用在辅助数据集上训练的自我监督功能提取器,并通过最大程度地提高分布数据的可能性并最大程度地减少辅助数据集上的可能性来训练提取功能的正常化流程。我们表明,这等同于学习分布和辅助特征密度之间的归一化正差。我们在基准数据集上进行实验,并显示出与可能性,似然比方法和最新异常检测方法相比的强大改进。
translated by 谷歌翻译
与行业4.0的发展相一致,越来越多的关注被表面缺陷检测领域所吸引。提高效率并节省劳动力成本已稳步成为行业领域引起人们关注的问题,近年来,基于深度学习的算法比传统的视力检查方法更好。尽管现有的基于深度学习的算法偏向于监督学习,但这不仅需要大量标记的数据和大量的劳动力,而且还效率低下,并且有一定的局限性。相比之下,最近的研究表明,无监督的学习在解决视觉工业异常检测的高于缺点方面具有巨大的潜力。在这项调查中,我们总结了当前的挑战,并详细概述了最近提出的针对视觉工业异常检测的无监督算法,涵盖了五个类别,其创新点和框架详细描述了。同时,提供了包含表面图像样本的公开可用数据集的信息。通过比较不同类别的方法,总结了异常检测算法的优点和缺点。预计将协助研究社区和行业发展更广泛,更跨域的观点。
translated by 谷歌翻译
无监督的异常检测和定位对于采集和标记足够的异常数据时对实际应用至关重要。基于现有的基于表示的方法提取具有深度卷积神经网络的正常图像特征,并通过非参数分布估计方法表征相应的分布。通过测量测试图像的特征与估计分布之间的距离来计算异常分数。然而,当前方法无法将图像特征与易解基本分布有效地映射到局部和全局特征之间的关系,这些功能与识别异常很重要。为此,我们提出了使用2D标准化流动实现的FastFlow,并将其用作概率分布估计器。我们的FastFlow可用作具有任意深度特征提取器的插入式模块,如Reset和Vision变压器,用于无监督的异常检测和定位。在训练阶段,FastFlow学习将输入视觉特征转换为贸易分布并获得识别推理阶段中的异常的可能性。 MVTEC AD数据集的广泛实验结果显示,在具有各种骨干网络的准确性和推理效率方面,FastFlow在先前的最先进的方法上超越了先前的方法。我们的方法通过高推理效率达到异常检测中的99.4%AUC。
translated by 谷歌翻译
由于缺乏标签信息,异常检测是机器学习中的基本但具有挑战性的问题。在这项工作中,我们提出了一种新颖而强大的框架,称为SLA $ ^ 2 $ P,用于无监督的异常检测。在从原始数据中提取代表性嵌入后,我们将随机投影应用于特征,并将不同投影转换的特征视为属于不同的伪类。然后,我们在这些转换功能上培训一个分类器网络,以执行自我监督的学习。接下来,我们向变换特征添加对冲扰动,以减少预测标签的软MAX分数,并基于这些扰动特征对分类器的预测不确定性来降低预测标签和设计异常分数。我们的动机是,由于相对较小的数量和分散的异常模式,1)伪标签分类器的培训更集中学习正常数据的语义信息而不是异常数据; 2)正常数据的转换特征比异常的扰动更强大。因此,异常的扰动转化的特征不能良好分类,因此具有比正常样本的异常分数低。在图像,文本和固有的表格基准数据集上进行了广泛的实验,并表明SLA $ ^ 2 $ p实现了最先进的导致无监督的异常检测任务一致。
translated by 谷歌翻译
异常检测是要识别在某些方面与训练观察结果不同的样本。这些不符合正常数据分布的样本称为异常值或异常。在现实世界的异常检测问题中,离群值不存在,定义不当或实例非常有限。最近的最新基于深度学习的异常检测方法遭受了高计算成本,复杂性,不稳定的培训程序和非平凡的实施,因此它们很难在现实世界应用中部署。为了解决这个问题,我们利用一个简单的学习程序来训练轻量级的卷积神经网络,在异常检测中达到最先进的表现。在本文中,我们建议将异常检测作为监督回归问题。我们使用连续值的两个可分离分布标记正常和异常数据。为了补偿训练时间中异常样品的不可用,我们利用直接图像增强技术来创建一组不同的样本作为异常。增强集的分布相似,但与正常数据略有偏差,而实际异常将具有进一步的分布。因此,对这些增强样品的训练回归器将导致标签的分布更加可分离,以适应正常和真实的异常数据点。图像和视频数据集的异常检测实验显示了所提出的方法比最新方法的优越性。
translated by 谷歌翻译