基于细化运算符的概念学习方法探索部分有序的解决方案空间来计算概念,这些空间用作个体的二进制分类模型。然而,这些方法探索的概念的数量可以很容易地增长到数百万的复杂学习问题。这通常会导致不切实际的运行时间。我们建议通过预测解决方案空间探索前的目标概念的长度来缓解这个问题。通过这些手段,我们可以在概念学习期间修剪搜索空间。为了实现这一目标,我们比较四个神经结构,并在四个基准上进行评估。我们的评估结果表明,经常性的神经网络架构在概念长度预测中表现最佳,宏F-MEARY从38%到92%。然后,我们扩展了eloe算法 - 学习ALC概念 - 我们的概念长度预测器。我们的扩展会产生算法剪辑。在我们的实验中,夹子比ALC的其他最先进的概念学习算法速度至少为7.5倍 - 包括Celoe - 并且在4个数据集中学习的3个概念的F-Peasure中实现了重大改进。为了重现性,我们在HTTPS://github.com/conceptlencthLearner/learnlencths中提供我们在公共Github存储库中的实现
translated by 谷歌翻译
知识图中的节点是一个重要任务,例如,预测缺失类型的实体,预测哪些分子导致癌症,或预测哪种药物是有前途的治疗候选者。虽然黑匣子型号经常实现高预测性能,但它们只是hoc后和本地可解释的,并且不允许学习模型轻松丰富域知识。为此,已经提出了学习描述了来自正和否定示例的逻辑概念。然而,学习这种概念通常需要很长时间,最先进的方法为文字数据值提供有限的支持,尽管它们对于许多应用是至关重要的。在本文中,我们提出了Evolearner - 学习ALCQ(D)的进化方法,它是与合格基数限制(Q)和数据属性配对的补充(ALC)的定语语言和数据属性(D)。我们为初始群体贡献了一种新颖的初始化方法:从正示例开始(知识图中的节点),我们执行偏见随机散步并将它们转换为描述逻辑概念。此外,我们通过在决定分割数据的位置时,通过最大化信息增益来提高数据属性的支持。我们表明,我们的方法在结构化机器学习的基准框架SML - 台阶上显着优于现有技术。我们的消融研究证实,这是由于我们的新颖初始化方法和对数据属性的支持。
translated by 谷歌翻译
归纳逻辑编程(ILP)是一种机器学习的形式。ILP的目标是诱导推广培训示例的假设(一组逻辑规则)。随着ILP转30,我们提供了对该领域的新介绍。我们介绍了必要的逻辑符号和主要学习环境;描述ILP系统的构建块;比较几个维度的几个系统;描述四个系统(Aleph,Tilde,Aspal和Metagol);突出关键应用领域;最后,总结了未来研究的当前限制和方向。
translated by 谷歌翻译
全球DataSphere快速增加,预计将达到20251年的175个Zettabytes。但是,大多数内容都是非结构化的,并且无法通过机器可以理解。将此数据构建到知识图中,使得智能应用程序具有诸如深度问题的智能应用,推荐系统,语义搜索等。知识图是一种新兴技术,允许使用内容与上下文一起逻辑推理和揭示新的洞察。因此,它提供了必要的语法和推理语义,使得能够解决复杂的医疗保健,安全,金融机构,经济学和业务问题。作为一项结果,企业正在努力建设和维护知识图表,以支持各种下游应用。手动方法太贵了。自动化方案可以降低建设知识图的成本,高达15-250次。本文批评了最先进的自动化技术,以自主地生成近乎人类的近乎人类的质量。此外,它突出了需要解决的不同研究问题,以提供高质量的知识图表
translated by 谷歌翻译
我们研究了对知识图中链路预测任务的知识图形嵌入(KGE)模型产生数据中毒攻击的问题。为了毒害KGE模型,我们建议利用他们通过知识图中的对称性,反演和构图等关系模式捕获的归纳能力。具体而言,为了降低模型对目标事实的预测信心,建议改善模型对一系列诱饵事实的预测信心。因此,我们通过不同的推理模式来制作对逆势的添加能够改善模型对诱饵事实上的预测信心。我们的实验表明,拟议的中毒攻击在四个KGE模型上倾斜的最先进的基座,用于两个公共数据集。我们还发现基于对称模式的攻击遍历了所有模型 - 数据集合,指示KGE模型对此模式的灵敏度。
translated by 谷歌翻译
我们提出了一种有效的可解释的神经象征模型来解决感应逻辑编程(ILP)问题。在该模型中,该模型是由在分层结构中组织的一组元规则构建的,通过学习嵌入来匹配元规则的事实和身体谓词来发明一阶规则。为了实例化它,我们专门设计了一种表现型通用元规则集,并证明了它们产生的喇叭条件的片段。在培训期间,我们注入了控制的\ PW {gumbel}噪声以避免本地最佳,并采用可解释性 - 正则化术语来进一步指导融合到可解释规则。我们在针对几种最先进的方法上证明我们对各种任务(ILP,视觉基因组,强化学习)的模型进行了验证。
translated by 谷歌翻译
我们根据生态毒理学风险评估中使用的主要数据来源创建了知识图表。我们已经将这种知识图表应用于风险评估中的重要任务,即化学效果预测。我们已经评估了在该预测任务的各种几何,分解和卷积模型中嵌入模型的九个知识图形嵌入模型。我们表明,使用知识图形嵌入可以提高与神经网络的效果预测的准确性。此外,我们已经实现了一种微调架构,它将知识图形嵌入到效果预测任务中,并导致更好的性能。最后,我们评估知识图形嵌入模型的某些特征,以阐明各个模型性能。
translated by 谷歌翻译
人工智能代理必须从周围环境中学到学习,并了解所学习的知识,以便做出决定。虽然从数据的最先进的学习通常使用子符号分布式表示,但是使用用于知识表示的一阶逻辑语言,推理通常在更高的抽象级别中有用。结果,将符号AI和神经计算结合成神经符号系统的尝试已经增加。在本文中,我们呈现了逻辑张量网络(LTN),一种神经组织形式和计算模型,通过引入许多值的端到端可分别的一阶逻辑来支持学习和推理,称为真实逻辑作为表示语言深入学习。我们表明LTN为规范提供了统一的语言,以及多个AI任务的计算,如数据聚类,多标签分类,关系学习,查询应答,半监督学习,回归和嵌入学习。我们使用TensorFlow2的许多简单的解释例实施和说明上述每个任务。关键词:神经组音恐怖症,深度学习和推理,许多值逻辑。
translated by 谷歌翻译
外部知识(A.K.A.侧面信息)在零拍摄学习(ZSL)中起着关键作用,该角色旨在预测从未出现在训练数据中的看不见的类。已被广泛调查了几种外部知识,例如文本和属性,但他们独自受到不完整的语义。因此,一些最近的研究提出了由于其高度富有效力和代表知识的兼容性而使用知识图表(千克)。但是,ZSL社区仍然缺乏用于学习和比较不同外部知识设置和基于不同的KG的ZSL方法的标准基准。在本文中,我们提出了六个资源,涵盖了三个任务,即零拍摄图像分类(ZS-IMGC),零拍摄关系提取(ZS-RE)和零拍KG完成(ZS-KGC)。每个资源都有一个正常的zsl基准标记和包含从文本到属性的kg的kg,从关系知识到逻辑表达式。我们已清楚地介绍了这些资源,包括其建设,统计数据格式和使用情况W.r.t.不同的ZSL方法。更重要的是,我们进行了一项全面的基准研究,具有两个通用和最先进的方法,两种特定方法和一种可解释方法。我们讨论并比较了不同的ZSL范式W.R.T.不同的外部知识设置,并发现我们的资源具有开发更高级ZSL方法的巨大潜力,并为应用KGS进行增强机学习的更多解决方案。所有资源都可以在https://github.com/china-uk-zsl/resources_for_kzsl上获得。
translated by 谷歌翻译
知识图(KGS)代表作为三元组的事实已被广泛采用在许多应用中。 LIGHT预测和规则感应等推理任务对于KG的开发很重要。已经提出了知识图形嵌入式(KGES)将kg的实体和kg与持续向量空间的关系进行了建议,以获得这些推理任务,并被证明是有效和强大的。但在实际应用中申请和部署KGE的合理性和可行性尚未探索。在本文中,我们讨论并报告我们在真实域应用程序中部署KGE的经验:电子商务。我们首先为电子商务KG系统提供三个重要的探索者:1)注意推理,推理几个目标关系更为关注而不是全部; 2)解释,提供预测的解释,帮助用户和业务运营商理解为什么预测; 3)可转让规则,生成可重用的规则,以加速将千克部署到新系统。虽然非现有KGE可以满足所有这些DesiderATA,但我们提出了一种新颖的一种,可说明的知识图表注意网络,通过建模三元组之间的相关性而不是纯粹依赖于其头实体,关系和尾部实体嵌入来预测。它可以自动选择预测的注意力三倍,并同时记录它们的贡献,从该解释可以很容易地提供,可以有效地生产可转移规则。我们经验表明,我们的方法能够在我们的电子商务应用程序中满足所有三个DesiderATA,并从实际域应用程序中倾斜于数据集的典型基线。
translated by 谷歌翻译
最近公布的知识图形嵌入模型的实施,培训和评估的异质性已经公平和彻底的比较困难。为了评估先前公布的结果的再现性,我们在Pykeen软件包中重新实施和评估了21个交互模型。在这里,我们概述了哪些结果可以通过其报告的超参数再现,这只能以备用的超参数再现,并且无法再现,并且可以提供洞察力,以及为什么会有这种情况。然后,我们在四个数据集上进行了大规模的基准测试,其中数千个实验和24,804 GPU的计算时间。我们展示了最佳实践,每个模型的最佳配置以及可以通过先前发布的最佳配置进行改进的洞察。我们的结果强调了模型架构,训练方法,丢失功能和逆关系显式建模的组合对于模型的性能来说至关重要,而不仅由模型架构决定。我们提供了证据表明,在仔细配置时,若干架构可以获得对最先进的结果。我们制定了所有代码,实验配置,结果和分析,导致我们在https://github.com/pykeen/pykeen和https://github.com/pykeen/benchmarking中获得的解释
translated by 谷歌翻译
回答集编程(ASP)已成为一种流行的和相当复杂的声明问题解决方法。这是由于其具有吸引力的地址解决方案的工作流程,这是可以轻松解决问题解决的方法,即使对于计算机科学外的守护者而言。与此不同,底层技术的高度复杂性使得ASP专家越来越难以将想法付诸实践。有关解决此问题,本教程旨在使用户能够构建自己的基于ASP的系统。更确切地说,我们展示了ASP系统Clingo如何用于扩展ASP和实现定制的专用系统。为此,我们提出了两个替代方案。我们从传统的AI技术开始,并展示元编程如何用于扩展ASP。这是一种相当轻的方法,依赖于Clingo的reation特征来使用ASP本身表达新功能。与此不同,本教程的主要部分使用传统的编程(在Python中)来通过其应用程序编程接口操纵Clingo。这种方法允许改变和控制ASP的整个模型 - 地面解决工作流程。 COMENT of Clingo的新应用程序课程使我们能够通过自定义类似于Clingo中的进程来绘制Clingo的基础架构。例如,我们可能会互动到程序的抽象语法树,控制各种形式的多射击求解,并为外国推论设置理论传播者。另一种横截面结构,跨越元以及应用程序编程是Clingo的中间格式,即指定底层接地器和求解器之间的界面。我们通过示例和几个非琐碎的案例研究说明了本教程的前述概念和技术。
translated by 谷歌翻译
我们研究知识图嵌入(KGE)对知识图(KG)完成的有效性,并通过规则挖掘完成。更具体地说,我们在KGE完成之前和之后从KGS中挖掘规则,以比较提取的规则的可能差异。我们将此方法应用于经典的方法,尤其是Transe,Distmult and Complext。我们的实验表明,根据KGE完成的KGE方法,提取的规则之间可能存在巨大差异。特别是,在完成转盘后,提取了几条虚假规则。
translated by 谷歌翻译
访问公共知识库中可用的大量信息可能对那些不熟悉的SPARQL查询语言的用户可能很复杂。SPARQL中自然语言提出的问题的自动翻译有可能克服这个问题。基于神经机翻译的现有系统非常有效,但在识别出识别出训练集的词汇(OOV)的单词中很容易失败。查询大型本体的时,这是一个严重的问题。在本文中,我们将命名实体链接,命名实体识别和神经计算机翻译相结合,以将自然语言问题的自动转换为SPARQL查询。我们凭经验证明,我们的方法比在纪念碑,QALD-9和LC-QUAD V1上运行实验,我们的方法比现有方法更有效,并且对OOV单词进行了更有效的,并且是现有的方法,这些方法是众所周知的DBPedia的相关数据集。
translated by 谷歌翻译
在大规模不完整的知识图(kgs)上回答复杂的一阶逻辑(fol)查询是一项重要但挑战性的任务。最近的进步将逻辑查询和KG实体嵌入了相同的空间,并通过密集的相似性搜索进行查询。但是,先前研究中设计的大多数逻辑运算符不满足经典逻辑的公理系统,从而限制了其性能。此外,这些逻辑运算符被参数化,因此需要许多复杂的查询作为训练数据,在大多数现实世界中,这些数据通常很难收集甚至无法访问。因此,我们提出了Fuzzqe,这是一种基于模糊逻辑的逻辑查询嵌入框架,用于回答KGS上的查询。 Fuzzqe遵循模糊逻辑以原则性和无学习的方式定义逻辑运算符,在这种方式中,只有实体和关系嵌入才需要学习。 Fuzzqe可以从标记为训练的复杂逻辑查询中进一步受益。在两个基准数据集上进行的广泛实验表明,与最先进的方法相比,Fuzzqe在回答FOL查询方面提供了明显更好的性能。此外,只有KG链接预测训练的Fuzzqe可以实现与经过额外复杂查询数据训练的人的可比性能。
translated by 谷歌翻译
知识图(kg)推论是解决KGs自然不完整性的重要技术。现有的kg推断方法可以分为基于规则的基于和基于kg嵌入的模型。然而,这些方法同时不能平衡准确性,泛化,解释性和效率。此外,这些模型总是依赖于纯粹的三元族并忽略额外信息。因此,KG嵌入(KGE)和规则学习kg推理因稀疏实体和有限的语义而接近面临的面临挑战。我们提出了一种新颖且有效的闭环kg推理框架,与基于这些观察结果类似地运行作为发动机。 EngineKgi将KGE和RULE学习在闭环模式中互相补充,同时利用路径和概念中的语义。 KGE模块利用路径来增强实体之间的语义关联,并介绍解释性规则。通过利用路径作为初始候选规则,在规则学习模块中提出了一种新颖的规则修剪机制,并使用KG Embeddings以及提取更高质量规则的概念。四个真实数据集的实验结果表明,我们的模型在链路预测任务上占外的其他基线,展示了我们模型在KG推理中以闭环机制的关节逻辑和数据驱动方式的效力和优越性。
translated by 谷歌翻译
人们如何思考,感受和行为,主要是对其人格特征的代表。通过意识到我们正在与之打交道或决定处理的个人的个性特征,无论其类型如何,人们都可以胜任地改善这种关系。随着基于互联网的通信基础架构(社交网络,论坛等)的兴起,那里发生了相当多的人类通信。这种交流中最突出的工具是以书面和口语形式的语言,可以忠实地编码个人的所有基本人格特征。基于文本的自动人格预测(APP)是基于生成/交换的文本内容的个人个性的自动预测。本文提出了一种基于文本的应用程序的新型知识的方法,该方法依赖于五大人格特征。为此,给定文本,知识图是一组相互联系的概念描述,是通过将输入文本的概念与DBPEDIA知识基础条目匹配的。然后,由于实现了更强大的表示,该图被DBPEDIA本体论,NRC情感强度词典和MRC心理语言数据库信息丰富。之后,现在是输入文本的知识渊博的替代方案的知识图被嵌入以产生嵌入矩阵。最后,为了执行人格预测,将最终的嵌入矩阵喂入四个建议的深度学习模型,这些模型基于卷积神经网络(CNN),简单的复发性神经网络(RNN),长期短期记忆(LSTM)和双向长短短短术语内存(Bilstm)。结果表明,所有建议的分类器中的预测准确度有了显着改善。
translated by 谷歌翻译
大型知识图(KGS)提供人类知识的结构化表示。然而,由于不可能包含所有知识,KGs通常不完整。基于现有事实的推理铺平了一种发现缺失事实的方法。在本文中,我们研究了了解完成缺失事实三胞胎的知识图表的推理的学习逻辑规则问题。学习逻辑规则将具有很强的解释性的模型以及概括到类似任务的能力。我们提出了一种称为MPLR的模型,可以改进现有模型以完全使用培训数据,并且考虑多目标方案。此外,考虑到缺乏评估模型表现和开采规则的质量,我们进一步提出了两名新颖的指标来帮助解决问题。实验结果证明我们的MPLR模型在五个基准数据集中优于最先进的方法。结果还证明了指标的有效性。
translated by 谷歌翻译
学术知识图(KGS)提供了代表科学出版物编码的知识的丰富的结构化信息来源。随着出版的科学文学的庞大,包括描述科学概念的过多的非均匀实体和关系,这些公斤本质上是不完整的。我们呈现Exbert,一种利用预先训练的变压器语言模型来执行学术知识图形完成的方法。我们将知识图形的三元组模型为文本并执行三重分类(即,属于KG或不属于KG)。评估表明,在三重分类,链路预测和关系预测的任务中,Exbert在三个学术kg完成数据集中表现出其他基线。此外,我们将两个学术数据集作为研究界的资源,从公共公共公报和在线资源中收集。
translated by 谷歌翻译
变量名称对于传达预期的程序行为至关重要。基于机器学习的程序分析方法使用变量名称表示广泛的任务,例如建议新的变量名称和错误检测。理想情况下,这些方法可以捕获句法相似性的名称之间的语义关系,例如,名称平均和均值的事实是相似的。不幸的是,以前的工作发现,即使是先前的最佳的表示方法主要是捕获相关性(是否有两个变量始终链接),而不是相似性(是否具有相同的含义)。我们提出了VarCLR,一种用于学习变量名称的语义表示的新方法,这些方法有效地捕获了这种更严格的意义上的可变相似性。我们观察到这个问题是对比学习的优秀契合,旨在最小化明确类似的输入之间的距离,同时最大化不同输入之间的距离。这需要标记的培训数据,因此我们构建了一种新颖的弱监督的变量重命名数据集,从GitHub编辑开采。我们表明VarCLR能够有效地应用BERT等复杂的通用语言模型,以变为变量名称表示,因此也是与变量名称相似性搜索或拼写校正等相关的下游任务。 varclr产生模型,显着越优于idbench的最先进的现有基准,明确地捕获可变相似度(与相关性不同)。最后,我们贡献了所有数据,代码和预先训练模型的版本,旨在为现有或未来程序分析中使用的可变表示提供的可变表示的替代品。
translated by 谷歌翻译