Extremely large-scale massive MIMO (XL-MIMO) has been reviewed as a promising technology for future wireless communications. The deployment of XL-MIMO, especially at high-frequency bands, leads to users being located in the near-field region instead of the conventional far-field. This letter proposes efficient model-based deep learning algorithms for estimating the near-field wireless channel of XL-MIMO communications. In particular, we first formulate the XL-MIMO near-field channel estimation task as a compressed sensing problem using the spatial gridding-based sparsifying dictionary, and then solve the resulting problem by applying the Learning Iterative Shrinkage and Thresholding Algorithm (LISTA). Due to the near-field characteristic, the spatial gridding-based sparsifying dictionary may result in low channel estimation accuracy and a heavy computational burden. To address this issue, we further propose a new sparsifying dictionary learning-LISTA (SDL-LISTA) algorithm that formulates the sparsifying dictionary as a neural network layer and embeds it into LISTA neural network. The numerical results show that our proposed algorithms outperform non-learning benchmark schemes, and SDL-LISTA achieves better performance than LISTA with ten times atoms reduction.
translated by 谷歌翻译
Terahertz超质量多输入多输出(THZ UM-MIMO)被设想为6G无线系统的关键推动器之一。由于其阵列孔和小波长的关节作用,Thz Um-Mimo的近场区域大大扩大。因此,此类系统的高维通道由远处和近场的随机混合物组成,这使通道估计非常具有挑战性。以前基于单场假设的作品无法捕获混合动力远处和近场特征,因此遭受了巨大的性能丧失。这激发了我们考虑混合场渠道估计。我们从固定点理论中汲取灵感,以开发具有自适应复杂性和线性收敛保证的有效基于深度学习的渠道估计器。基于经典的正交近似消息传递,我们将每次迭代转换为一个合同映射,包括封闭形式的线性估计器和基于神经网络的非线性估计器。主要的算法创新涉及应用固定点迭代以计算通道估计,同时对具有任意深度的神经网络进行建模并适应混合场通道条件。仿真结果验证了我们的理论分析,并在估计准确性和收敛速率上显示出对最先进方法的显着性能。
translated by 谷歌翻译
在空中杂种大规模多输入多输出(MIMO)和正交频施加多路复用(OFDM)系统中,如何设计具有有限的飞行员和反馈开销的光谱效率宽带多用户混合波束,这是具有挑战性的。为此,通过将关键传输模块建模为端到端(E2E)神经网络,本文提出了一个数据驱动的深度学习(DL)基于时间划分双工(TDD)的基于数据驱动的深度学习(DL)的统一混合边际框架和具有隐式通道状态信息(CSI)的频分隔双链(FDD)系统。对于TDD系统,提出的基于DL的方法共同对上行链路飞行员组合和下行链路混合光束模块作为E2E神经网络。在FDD系统中,我们将下行链路飞行员传输,上行链路CSI反馈和下行链路混合光束形成模块作为E2E神经网络建模。与分别处理不同模块的常规方法不同,提出的解决方案同时以总和速率作为优化对象优化了所有模块。因此,通过感知空对地面大规模MIMO-OFDM通道样本的固有属性,基于DL的E2E神经网络可以建立从通道到波束形式的映射函数,以便可以避免使用显式通道重建,以减少飞行员和反馈开销。此外,实用的低分辨率相变(PSS)引入了量化约束,从而导致训练神经网络时棘手的梯度反向传播。为了减轻阶段量化误差引起的性能损失,我们采用转移学习策略,以基于假定理想的无限分辨率PSS的预训练网络来进一步调整E2E神经网络。数值结果表明,我们的基于DL的方案比最先进的方案具有相当大的优势。
translated by 谷歌翻译
可重新配置的智能表面(RIS)可以显着增强TERA-HERTZ大量多输入多输出(MIMO)通信系统的服务覆盖范围。但是,获得有限的飞行员和反馈信号开销的准确高维通道状态信息(CSI)具有挑战性,从而严重降低了常规空间分裂多次访问的性能。为了提高针对CSI缺陷的鲁棒性,本文提出了针对RIS辅助TERA-HERTZ多用户MIMO系统的基于深度学习的(DL)基于速率的多访问(RSMA)方案。具体而言,我们首先提出了基于DL的混合数据模型驱动的RSMA预编码方案,包括RIS的被动预编码以及模拟主动编码和基本站(BS)的RSMA数字活动预码。为了实现RIS的被动预码,我们提出了一个基于变压器的数据驱动的RIS反射网络(RRN)。至于BS的模拟主动编码,我们提出了一个基于匹配器的模拟预编码方案,因为BS和RIS采用了Los-Mimo天线阵列结构。至于BS的RSMA数字活动预码,我们提出了一个低复杂性近似加权的最小均方误差(AWMMSE)数字编码方案。此外,为了更好地编码性能以及较低的计算复杂性,模型驱动的深层展开的主动编码网络(DFAPN)也是通过将所提出的AWMMSE方案与DL相结合的。然后,为了在BS处获得准确的CSI,以实现提高光谱效率的RSMA预编码方案,我们提出了一个CSI采集网络(CAN),具有低飞行员和反馈信号开销,下行链接飞行员的传输,CSI在此处使用CSI的CSI反馈。 (UES)和BS处的CSI重建被建模为基于变压器的端到端神经网络。
translated by 谷歌翻译
由于其低复杂性和鲁棒性,机器学习(ML)吸引了对物理层设计问题的巨大研究兴趣,例如信道估计。通道估计通过ML需要在数据集上进行模型训练,该数据集通常包括作为输入和信道数据的接收的导频信号作为输出。在以前的作品中,模型培训主要通过集中式学习(CL)进行,其中整个训练数据集从基站(BS)的用户收集。这种方法引入了数据收集的巨大通信开销。在本文中,为了解决这一挑战,我们提出了一种用于频道估计的联邦学习(FL)框架。我们设计在用户的本地数据集上培训的卷积神经网络(CNN),而不将它们发送到BS。我们为常规和RIS(智能反射表面)开发了基于流的信道估计方案,辅助大规模MIMO(多输入多输出)系统,其中单个CNN为两种情况训练了两个不同的数据集。我们评估噪声和量化模型传输的性能,并表明所提出的方法提供大约16倍的开销比CL,同时保持令人满意的性能接近CL。此外,所提出的架构表现出比最先进的ML的估计误差较低。
translated by 谷歌翻译
本文解决了Terahertz(THZ)通道估计中的两个主要挑战:光束切割现象,即由于频率独立的模拟束缚器和计算复杂性,由于使用超质量数量,因此由于频率非依赖性的模拟光束器和计算复杂性。已知数据驱动的技术可以减轻此问题的复杂性,但通常需要将数据集从用户传输到中央服务器,从而带来了巨大的通信开销。在这项工作中,我们采用联合学习(FL),其中用户仅传输模型参数,而不是整个数据集,以供THZ频道估计来提高通信效率。为了准确估算横梁切开,我们提出了Beamspace支持对准技术,而无需其他硬件。与以前的作品相比,我们的方法提供了更高的频道估计准确性,以及大约$ 68 $ $ 68 $倍的通信开销。
translated by 谷歌翻译
受到深度神经网络(DNN)的显着学习和预测性能的启发,我们应用了一种特殊类型的DNN框架,称为模型驱动的深度展开神经网络,可重新配置智能表面(RIS) - 提出的毫米波(MMWAVE)单个-Input多输出(SIMO)系统。我们专注于上行链路级联信道估计,其中考虑了已知和固定基站组合和RIS相位控制矩阵用于收集观察。为了提高估计性能并降低训练开销,可以在深度展开方法中利用MMWave通道的固有通道稀疏性。验证所提出的深度展开网络架构可以优于最小二乘(LS)方法,其具有相对较小的训练开销和在线计算复杂性。
translated by 谷歌翻译
为了减轻阴影衰落和障碍物阻塞的影响,可重新配置的智能表面(RIS)已经成为一种有前途的技术,通过控制具有较少硬件成本和更低的功耗来改善无线通信的信号传输质量。然而,由于大量的RIS被动元件,准确,低延迟和低导频和低导架频道状态信息(CSI)采集仍然是RIS辅助系统的相当大挑战。在本文中,我们提出了一个三阶段的关节通道分解和预测框架来要求CSI。所提出的框架利用了基站(BS)-RIS通道是准静态的两次时间段属性,并且RIS用户设备(UE)通道快速时变。具体而言,在第一阶段,我们使用全双工技术来估计BS的特定天线和RIS之间的信道,解决信道分解中的关键缩放模糊问题。然后,我们设计了一种新型的深度神经网络,即稀疏连接的长短期存储器(SCLSTM),并分别在第二和第三阶段提出基于SCLSTM的算法。该算法可以从级联信道同时分解BS-RIS信道和RIS-UE信道,并捕获RIS-UE信道的时间关系以进行预测。仿真结果表明,我们所提出的框架具有比传统信道估计算法更低的导频开销,并且所提出的基于SCLSTM的算法也可以鲁棒地和有效地实现更准确的CSI采集。
translated by 谷歌翻译
Terahertz频段(0.1---10 THZ)中的无线通信被视为未来第六代(6G)无线通信系统的关键促进技术之一,超出了大量多重输入多重输出(大量MIMO)技术。但是,THZ频率的非常高的传播衰减和分子吸收通常限制了信号传输距离和覆盖范围。从最近在可重构智能表面(RIS)上实现智能无线电传播环境的突破,我们为多跳RIS RIS辅助通信网络提供了一种新型的混合波束形成方案,以改善THZ波段频率的覆盖范围。特别是,部署了多个被动和可控的RIS,以协助基站(BS)和多个单人体用户之间的传输。我们通过利用最新的深钢筋学习(DRL)来应对传播损失的最新进展,研究了BS在BS和RISS上的模拟光束矩阵的联合设计。为了改善拟议的基于DRL的算法的收敛性,然后设计了两种算法,以初始化数字波束形成和使用交替优化技术的模拟波束形成矩阵。仿真结果表明,与基准相比,我们提出的方案能够改善50 \%的THZ通信范围。此外,还表明,我们提出的基于DRL的方法是解决NP-固定光束形成问题的最先进方法,尤其是当RIS辅助THZ通信网络的信号经历多个啤酒花时。
translated by 谷歌翻译
本文提出了一种对无线通信中的一类主动感测问题的深度学习方法,其中代理在预定数量的时间帧上与环境顺序地交互以收集信息,以便为最大化一些实用程序函数来执行感测或致动任务。在这样的主动学习设置中,代理需要根据到目前为止所做的观察结果来依次设计自适应感测策略。为了解决如此挑战的问题,其中历史观察的维度随着时间的推移而增加,我们建议使用长期短期记忆(LSTM)网络来利用观察序列中的时间相关性,并将每个观察映射到固定的尺寸状态信息矢量。然后,我们使用深神经网络(DNN)将LSTM状态映射到每个时间帧到下一个测量步骤的设计。最后,我们采用另一个DNN将最终的LSTM状态映射到所需的解决方案。我们调查了无线通信中建议框架的性能框架的性能。特别地,我们考虑用于MMWAVE光束对准的自适应波束形成问题和反射对准的自适应可重构智能表面感测问题。数值结果表明,所提出的深度主动传感策略优于现有的自适应或非一种非应用感测方案。
translated by 谷歌翻译
Deep learning-based physical-layer secret key generation (PKG) has been used to overcome the imperfect uplink/downlink channel reciprocity in frequency division duplexing (FDD) orthogonal frequency division multiplexing (OFDM) systems. However, existing efforts have focused on key generation for users in a specific environment where the training samples and test samples obey the same distribution, which is unrealistic for real world applications. This paper formulates the PKG problem in multiple environments as a learning-based problem by learning the knowledge such as data and models from known environments to generate keys quickly and efficiently in multiple new environments. Specifically, we propose deep transfer learning (DTL) and meta-learning-based channel feature mapping algorithms for key generation. The two algorithms use different training methods to pre-train the model in the known environments, and then quickly adapt and deploy the model to new environments. Simulation results show that compared with the methods without adaptation, the DTL and meta-learning algorithms both can improve the performance of generated keys. In addition, the complexity analysis shows that the meta-learning algorithm can achieve better performance than the DTL algorithm with less time, lower CPU and GPU resources.
translated by 谷歌翻译
混合模拟和数字波束成形收发器在解决下一代毫米波(MM波)大规模MIMO(多输入多输出)系统中的昂贵硬件和高训练开销的挑战。然而,在混合架构中缺乏完全数字波束成形和MM波的短相干时间对信道估计施加了额外的约束。在解决这些挑战的前提是,主要集中在窄带信道上,其中采用基于优化的或贪婪算法来导出混合波束形成器。在本文中,我们介绍了用于频率选择,宽带MM波系统的信道估计和混合波束形成的深度学习(DL)方法。特别地,我们考虑大规模的MIMO正交频分复用(MIMO-OFDM)系统,并提出包括卷积神经网络(CNN)的三种不同的DL框架,其接受接收信号的原始数据作为输入和产生信道估计和混合波束形成器在输出。我们还介绍了离线和在线预测方案。数值实验表明,与目前的最先进的优化和DL方法相比,我们的方法提供了更高的频谱效率,较小的计算成本和更少的导频信号,以及对接收的导频数据中的偏差较高的差异,损坏的信道矩阵和传播环境。
translated by 谷歌翻译
深度无形的神经网络(NNS)受到了极大的关注,因为它们的复杂性相对较低。通常,这些深度折​​叠的NN仅限于所有输入的固定深度。但是,收敛所需的最佳层随着不同的输入而变化。在本文中,我们首先开发了一个深层确定性策略梯度(DDPG)驱动的深度无折叠的框架,并针对不同输入进行自适应深度,在该框架中,DDPG学习了可训练的深度NN的可训练参数,而不是由随机梯度更新下降算法直接。具体而言,DDPG的状态,动作和状态过渡分别将优化变量,可训练的参数和架构分别设计为DDPG的状态,动作和状态过渡。然后,使用此框架来处理大量多输入多输出系统中的通道估计问题。具体而言,首先,我们通过离网基准制定了通道估计问题,并开发了稀疏的贝叶斯学习(SBL)基于基于的算法来解决它。其次,将基于SBL的算法展开为一组带有一组可训练参数的层结构。第三,采用了提出的DDPG驱动的深度解释框架来基于基于SBL的算法的展开结构来解决此通道估计问题。为了实现自适应深度,我们设计了停止分数以指示何时停止,这是通道重建误差的函数。此外,提出的框架被扩展到实现一般深度神经网络(DNNS)的适应性深度。仿真结果表明,所提出的算法的表现优于固定深度的常规优化算法和DNN,层数量大多。
translated by 谷歌翻译
巨大的多输入多输出(MIMO)通信系统在数据速率和能效方面具有巨大的潜力,尽管信道估计对于大量天线变得具有挑战性。使用物理模型允许通过基于传播物理来注入先验信息来缓解问题。然而,这种模型依赖于简化假设,并且需要精确地了解系统的配置,这在实践中是不现实的。在本文中我们呈现了MPNET,该展开神经网络专为大规模的MIMO信道估计而设计。它以无人监督的方式在线培训。此外,MPNET正在计算上高效,并自动将其深度与信噪比(SNR)相互作用。我们提出的方法通过允许基于传入数据自动校正其信道估计算法来增加物理信道模型的灵活性,而无需单独的离线训练阶段。它应用于现实毫米波通道并显示表现出色,实现频道估计误差几乎与一个完美校准的系统一起获得的频道估计误差。它还允许入射检测和自动校正,使BS弹性能够自动适应其环境的变化。
translated by 谷歌翻译
可重新配置的智能表面(RIS)是未来无线通信系统的新兴技术。在这项工作中,我们考虑由RIS启用的下行链路空间多路复用,以获得加权和速率(WSR)最大化。在文献中,大多数解决方案使用交替的基于梯度的优化,具有中等性能,高复杂性和有限的可扩展性。我们建议应用完全卷积的网络(FCN)来解决这个问题,最初是为图像的语义分割而设计的。 RIS的矩形形状和具有相邻RIS天线的通道的空间相关性由于它们之间的短距离而鼓励我们将其应用于RIS配置。我们设计一组通道功能,包括通过RIS和Direct通道的级联通道。在基站(BS)中,可分离的最小均方平方误差(MMSE)预编码器用于预测,然后应用加权最小均方误差(WMMSE)预编码器以进行微调,这是不增强的,更复杂的,但实现更好的表现。评价结果表明,该解决方案具有更高的性能,允许比基线更快的评估。因此,它可以更好地缩放到大量的天线,推进RIS更接近实际部署的步骤。
translated by 谷歌翻译
在带有频划分双链体(FDD)的常规多用户多用户多输入多输出(MU-MIMO)系统中,尽管高度耦合,但已单独设计了通道采集和预编码器优化过程。本文研究了下行链路MU-MIMO系统的端到端设计,其中包括试点序列,有限的反馈和预编码。为了解决这个问题,我们提出了一个新颖的深度学习(DL)框架,该框架共同优化了用户的反馈信息生成和基础站(BS)的预编码器设计。 MU-MIMO系统中的每个过程都被智能设计的多个深神经网络(DNN)单元所取代。在BS上,神经网络生成试验序列,并帮助用户获得准确的频道状态信息。在每个用户中,频道反馈操作是由单个用户DNN以分布方式进行的。然后,另一个BS DNN从用户那里收集反馈信息,并确定MIMO预编码矩阵。提出了联合培训算法以端到端的方式优化所有DNN单元。此外,还提出了一种可以避免针对可扩展设计的不同网络大小进行重新训练的培训策略。数值结果证明了与经典优化技术和其他常规DNN方案相比,提出的DL框架的有效性。
translated by 谷歌翻译
由于其快速和低功率配置,可重新配置的智能表面(RISS)最近被视为未来无线网络的节能解决方案,这在实现大规模连通性和低延迟通信方面具有增加的潜力。基于RIS的系统中的准确且低空的通道估计是通常的RIS单元元素及其独特的硬件约束,这是最关键的挑战之一。在本文中,我们专注于RIS授权的多用户多用户多输入单输出(MISO)上行链路通信系统的上行链路,并根据并行因子分解提出了一个通道估计框架,以展开所得的级联通道模型。我们为基站和RIS之间的渠道以及RIS与用户之间的渠道提供了两种迭代估计算法。一个基于交替的最小二乘(ALS),而另一个使用向量近似消息传递到迭代的迭代中,从估计的向量重建了两个未知的通道。为了从理论上评估基于ALS的算法的性能,我们得出了其估计值CRAM \'ER-RAO BOND(CRB)。我们还通过估计的通道和基本站的不同预码方案讨论了可实现的总和率计算。我们的广泛仿真结果表明,我们的算法表现优于基准方案,并且ALS技术可实现CRB。还证明,使用估计通道的总和率总是在各种设置下达到完美通道的总和,从而验证了提出的估计算法的有效性和鲁棒性。
translated by 谷歌翻译
Tomographic SAR technique has attracted remarkable interest for its ability of three-dimensional resolving along the elevation direction via a stack of SAR images collected from different cross-track angles. The emerged compressed sensing (CS)-based algorithms have been introduced into TomoSAR considering its super-resolution ability with limited samples. However, the conventional CS-based methods suffer from several drawbacks, including weak noise resistance, high computational complexity, and complex parameter fine-tuning. Aiming at efficient TomoSAR imaging, this paper proposes a novel efficient sparse unfolding network based on the analytic learned iterative shrinkage thresholding algorithm (ALISTA) architecture with adaptive threshold, named Adaptive Threshold ALISTA-based Sparse Imaging Network (ATASI-Net). The weight matrix in each layer of ATASI-Net is pre-computed as the solution of an off-line optimization problem, leaving only two scalar parameters to be learned from data, which significantly simplifies the training stage. In addition, adaptive threshold is introduced for each azimuth-range pixel, enabling the threshold shrinkage to be not only layer-varied but also element-wise. Moreover, the final learned thresholds can be visualized and combined with the SAR image semantics for mutual feedback. Finally, extensive experiments on simulated and real data are carried out to demonstrate the effectiveness and efficiency of the proposed method.
translated by 谷歌翻译
可重新配置的智能表面(RIS)已成为近年来改善无线通信的有希望的技术。它通过控制具有较少硬件成本和较低功耗来控制可重新配置的被动元件来引导入射信号来创建有利的传播环境。在本文中,我们考虑了一个RIS辅助多用户多输入单输出下行链路通信系统。我们的目标是通过在接入点和RIS元件的被动波束形成向量中优化主动波束形成来最大化所有用户的加权和速率。与大多数现有的作品不同,我们考虑使用离散相移和不完美的信道状态信息(CSI)更实际的情况。具体而言,对于考虑离散相移和完美CSI的情况,我们首先开发一个深量化的神经网络(DQNN),同时设计主动和被动波束形成,而大多数报道的作品可选地设计。然后,我们基于DQNN提出改进的结构(I-DQNN),以简化参数决策过程,当每个RIS元素的控制位大于1位时。最后,我们将两种基于DQNN的算法扩展到同时考虑离散相移和不完全CSI的情况。我们的仿真结果表明,基于DQNN的两种算法比完美CSI案例中的传统算法更好,并且在不完美的CSI案例中也是更强大的。
translated by 谷歌翻译
给定有限数量的训练数据样本的分类的基本任务被考虑了具有已知参数统计模型的物理系统。基于独立的学习和统计模型的分类器面临使用小型训练集实现分类任务的主要挑战。具体地,单独依赖基于物理的统计模型的分类器通常遭受它们无法适当地调整底层的不可观察的参数,这导致系统行为的不匹配表示。另一方面,基于学习的分类器通常依赖于来自底层物理过程的大量培训数据,这在最实际的情况下可能不可行。本文提出了一种混合分类方法 - 被称为亚牙线的菌丝 - 利用基于物理的统计模型和基于学习的分类器。所提出的解决方案基于猜想,即通过融合它们各自的优势,刺鼠线将减轻与基于学习和统计模型的分类器的各个方法相关的挑战。所提出的混合方法首先使用可用(次优)统计估计程序来估计不可观察的模型参数,随后使用基于物理的统计模型来生成合成数据。然后,培训数据样本与基于学习的分类器中的合成数据结合到基于神经网络的域 - 对抗训练。具体地,为了解决不匹配问题,分类器将从训练数据和合成数据的映射学习到公共特征空间。同时,培训分类器以在该空间内找到判别特征,以满足分类任务。
translated by 谷歌翻译