我们提出了神经可变形场(NDF),这是一种从多视频视频中进行动态人类数字化的新表示形式。最近的作品提出,代表具有共同的规范神经辐射场的动态人体,该范围与变形场估计相结合了观察空间。但是,学到的规范表示是静态的,变形场的当前设计无法表示大型运动或详细的几何变化。在本文中,我们建议学习一个围绕合适的参数体模型包裹的神经可变形场,以代表动态人体。NDF通过基础参考表面在空间上对齐。然后,学会了神经网络将其映射到NDF的动力学。提出的NDF表示可以通过新颖的观点和新颖的姿势合成数字化的表演者,并具有详细且合理的动态外观。实验表明,我们的方法明显优于最近的人类合成方法。
translated by 谷歌翻译
我们提出了神经演员(NA),一种用于从任意观点和任意可控姿势的高质量合成人类的新方法。我们的方法是基于最近的神经场景表示和渲染工作,从而从仅从2D图像中学习几何形状和外观的表示。虽然现有的作品令人兴奋地呈现静态场景和动态场景的播放,具有神经隐含方法的照片 - 现实重建和人类的渲染,特别是在用户控制的新颖姿势下,仍然很困难。为了解决这个问题,我们利用一个粗体模型作为将周围的3D空间的代理放入一个规范姿势。神经辐射场从多视图视频输入中了解在规范空间中的姿势依赖几何变形和姿势和视图相关的外观效果。为了综合高保真动态几何和外观的新颖视图,我们利用身体模型上定义的2D纹理地图作为预测残余变形和动态外观的潜变量。实验表明,我们的方法能够比播放的最先进,以及新的姿势合成来实现更好的质量,并且甚至可以概括到新的姿势与训练姿势不同的姿势。此外,我们的方法还支持对合成结果的体形控制。
translated by 谷歌翻译
本文解决了从多视频视频中重建动画人类模型的挑战。最近的一些作品提出,将一个非刚性变形的场景分解为规范的神经辐射场和一组变形场,它们映射观察空间指向规范空间,从而使它们能够从图像中学习动态场景。但是,它们代表变形场作为转换矢量场或SE(3)字段,这使得优化高度不受限制。此外,这些表示无法通过输入动议明确控制。取而代之的是,我们基于线性混合剥皮算法引入了一个姿势驱动的变形场,该算法结合了混合重量场和3D人类骨架,以产生观察到的对应对应。由于3D人类骨骼更容易观察到,因此它们可以正规化变形场的学习。此外,可以通过输入骨骼运动来控制姿势驱动的变形场,以生成新的变形字段来动画规范人类模型。实验表明,我们的方法显着优于最近的人类建模方法。该代码可在https://zju3dv.github.io/animatable_nerf/上获得。
translated by 谷歌翻译
在规范空间中对人体进行建模是捕捉和动画的常见实践。但是,当涉及神经辐射场(NERF)时,在规范空间中学习静态NERF是不够的,因为即使人体移动时,即使场景照明是恒定的,身体的照明也会变化。以前的方法通过学习人均嵌入来减轻照明的不一致,但是此操作并不能推广到看不见的姿势。鉴于照明条件在世界空间中是静态的,而人体在规范空间中是一致的,我们提出了一个双空间的nerf,该nerf在场景照明和人体中对两个单独空间的两个MLP进行建模。为了弥合这两个空间,以前的方法主要依赖于线性混合剥皮(LBS)算法。但是,动态神经场的LB的混合重量很难棘手,因此通常用另一个MLP记住,这不会推广到新型姿势。尽管可以借用参数网格(例如SMPL)的混合权重,但插值操作会引入更多的伪像。在本文中,我们建议使用Barycentric映射,该映射可以直接概括为看不见的姿势并出奇地取得了比具有神经混合重量的LB的优势。人类36M和ZJU-MOCAP数据集的定量和定性结果显示了我们方法的有效性。
translated by 谷歌翻译
我们提出了一种从稀疏多视图RGB视频重建可控隐式3D人类模型的新方法。我们的方法在网格表面点上定义神经场景表示,并从人体网格的表面签名距离。我们识别出一种无法区分的问题,当3D空间中的点映射到其最近的网格上的最近的表面点时出现的问题,用于学习表面对齐的神经场景表示。要解决此问题,我们将使用与修改的顶点正常的重心插值提出将点投影到网状表面上。与Zju-Mocap和Human3.6m数据集的实验表明,我们的方法在比现有方法的新颖性和新型姿态合成中实现了更高的质量。我们还表明,我们的方法很容易支持身体形状和衣服的控制。
translated by 谷歌翻译
最近的神经人类表示可以产生高质量的多视图渲染,但需要使用密集的多视图输入和昂贵的培训。因此,它们在很大程度上仅限于静态模型,因为每个帧都是不可行的。我们展示了人类学 - 一种普遍的神经表示 - 用于高保真自由观察动态人类的合成。类似于IBRNET如何通过避免每场景训练来帮助NERF,Humannerf跨多视图输入采用聚合像素对准特征,以及用于解决动态运动的姿势嵌入的非刚性变形场。原始人物员已经可以在稀疏视频输入的稀疏视频输入上产生合理的渲染。为了进一步提高渲染质量,我们使用外观混合模块增强了我们的解决方案,用于组合神经体积渲染和神经纹理混合的益处。各种多视图动态人类数据集的广泛实验证明了我们在挑战运动中合成照片 - 现实自由观点的方法和非常稀疏的相机视图输入中的普遍性和有效性。
translated by 谷歌翻译
最近,基于神经辐射场(NERF)的进步,在3D人类渲染方面取得了迅速的进展,包括新的视图合成和姿势动画。但是,大多数现有方法集中在特定于人的培训上,他们的培训通常需要多视频视频。本文涉及一项新的挑战性任务 - 为在培训中看不见的人提供新颖的观点和新颖的姿势,仅使用多视图图像作为输入。对于此任务,我们提出了一种简单而有效的方法,以训练具有多视图像作为条件输入的可推广的NERF。关键成分是结合规范NERF和体积变形方案的专用表示。使用规范空间使我们的方法能够学习人类的共享特性,并轻松地推广到不同的人。音量变形用于将规范空间与输入和目标图像以及查询图像特征连接起来,以进行辐射和密度预测。我们利用拟合在输入图像上的参数3D人类模型来得出变形,与我们的规范NERF结合使用,它在实践中效果很好。具有新的观点合成和构成动画任务的真实和合成数据的实验共同证明了我们方法的功效。
translated by 谷歌翻译
我们提出了一个新颖的范式,该范式是通过单眼视频输入来构建可动画的3D人类代表,以便可以以任何看不见的姿势和观点呈现。我们的方法基于由基于网格的参数3D人类模型操纵的动态神经辐射场(NERF),该模型用作几何代理。以前的方法通常依靠多视频视频或准确的3D几何信息作为其他输入;此外,大多数方法在概括地看不见的姿势时会降解质量。我们确定概括的关键是查询动态NERF的良好输入嵌入:良好的输入嵌入应定义完整量化空间中的注入映射,并在姿势变化下表面网格变形引导。基于此观察结果,我们建议将输入查询嵌入其与局部表面区域的关系,并在网格顶点上跨越一组地球的最近邻居跨越。通过包括位置和相对距离信息,我们的嵌入式定义了距离保存的变形映射,并可以很好地概括为看不见的姿势。为了减少对其他输入的依赖性,我们首先使用现成的工具初始化人均3D网格,然后提出一条管道以共同优化NERF并完善初始网格。广泛的实验表明,我们的方法可以在看不见的姿势和观点下合成合理的人类渲染结果。
translated by 谷歌翻译
我们提出了一种新方法,以从多个人的一组稀疏的多视图图像中学习通用的动画神经人类表示。学到的表示形式可用于合成一组稀疏相机的任意人的新型视图图像,并通过用户的姿势控制进一步对它们进行动画。尽管现有方法可以推广到新人,也可以通过用户控制合成动画,但它们都不能同时实现。我们将这一成就归因于用于共享多人人类模型的3D代理,并将不同姿势的空间的扭曲延伸到共享的规范姿势空间,在该空间中,我们在其中学习神经领域并预测个人和人物 - 姿势依赖性变形以及从输入图像中提取的特征的外观。为了应对身体形状,姿势和衣服变形的较大变化的复杂性,我们以分离的几何形状和外观设计神经人类模型。此外,我们在空间点和3D代理的表面点上都利用图像特征来预测人和姿势依赖性特性。实验表明,我们的方法在这两个任务上的最先进都大大优于最先进的方法。该视频和代码可在https://talegqz.github.io/neural_novel_actor上获得。
translated by 谷歌翻译
基于坐标的体积表示有可能从图像中生成光真实的虚拟化身。但是,即使是可能未观察到的新姿势,虚拟化身也需要控制。传统技术(例如LBS)提供了这样的功能;但是,通常需要手工设计的车身模板,3D扫描数据和有限的外观模型。另一方面,神经表示在表示视觉细节方面具有强大的作用,但在变形的动态铰接式参与者方面受到了探索。在本文中,我们提出了TAVA,这是一种基于神经表示形式创建无象光动画体积参与者的方法。我们仅依靠多视图数据和跟踪的骨骼来创建演员的体积模型,该模型可以在给定的新颖姿势的测试时间中进行动画。由于塔瓦不需要身体模板,因此它适用于人类以及其他动物(例如动物)。此外,Tava的设计使其可以恢复准确的密集对应关系,从而使其适合于内容创建和编辑任务。通过广泛的实验,我们证明了所提出的方法可以很好地推广到新颖的姿势以及看不见的观点和展示基本的编辑功能。
translated by 谷歌翻译
神经量渲染能够在自由观看中的人类表演者的照片真实效果图,这是沉浸式VR/AR应用中的关键任务。但是,这种做法受到渲染过程中高计算成本的严重限制。为了解决这个问题,我们提出了紫外线量,这是一种新方法,可以实时呈现人类表演者的可编辑免费视频视频。它将高频(即非平滑)的外观与3D体积分开,并将其编码为2D神经纹理堆栈(NTS)。光滑的紫外线量允许更小且较浅的神经网络获得3D的密度和纹理坐标,同时在2D NT中捕获详细的外观。为了编辑性,参数化的人类模型与平滑纹理坐标之间的映射使我们可以更好地对新型姿势和形状进行更好的概括。此外,NTS的使用启用了有趣的应用程序,例如重新启动。关于CMU Panoptic,ZJU MOCAP和H36M数据集的广泛实验表明,我们的模型平均可以在30fps中呈现960 * 540张图像,并具有可比的照片现实主义与先进方法。该项目和补充材料可从https://github.com/fanegg/uv-volumes获得。
translated by 谷歌翻译
对人类的逼真渲染和安息对于实现增强现实体验至关重要。我们提出了一个新颖的框架,以重建人类和场景,可以用新颖的人类姿势和景色从一个单一的野外视频中呈现。给定一个由移动摄像机捕获的视频,我们训练了两个NERF模型:人类NERF模型和一个场景NERF模型。为了训练这些模型,我们依靠现有方法来估计人类和场景的粗糙几何形状。这些粗糙的几何估计值使我们能够创建一个从观察空间到独立姿势独立的空间的翘曲场10秒的视频剪辑,并以新颖的观点以及背景提供新颖的姿势,提供人类的高质量效果。
translated by 谷歌翻译
我们向渲染和时间(4D)重建人类的渲染和时间(4D)重建的神经辐射场,通过稀疏的摄像机捕获或甚至来自单眼视频。我们的方法将思想与神经场景表示,新颖的综合合成和隐式统计几何人称的人类表示相结合,耦合使用新颖的损失功能。在先前使用符号距离功能表示的结构化隐式人体模型,而不是使用统一的占用率来学习具有统一占用的光域字段。这使我们能够从稀疏视图中稳健地融合信息,并概括超出在训练中观察到的姿势或视图。此外,我们应用几何限制以共同学习观察到的主题的结构 - 包括身体和衣服 - 并将辐射场正规化为几何合理的解决方案。在多个数据集上的广泛实验证明了我们方法的稳健性和准确性,其概括能力显着超出了一系列的姿势和视图,以及超出所观察到的形状的统计外推。
translated by 谷歌翻译
我们介绍了一个自由视的渲染方法 - Humannerf - 这对人类进行了复杂的身体运动的给定单曲视频工作,例如,来自YouTube的视频。我们的方法可以在任何帧中暂停视频,并从任意新相机视点呈现对象,甚至是该特定帧和身体姿势的完整360度摄像机路径。这项任务特别具有挑战性,因为它需要合成身体的光电型细节,如从输入视频中可能不存在的各种相机角度所见,以及合成布折叠和面部外观的细细节。我们的方法优化了在规范T型姿势中的人的体积表示,同时通过运动场,该运动场通过向后的警报将估计的规范表示映射到视频的每个帧。运动场分解成骨骼刚性和非刚性运动,由深网络产生。我们对现有工作显示出显着的性能改进,以及从移动人类的单眼视频的令人尖锐的观点渲染的阐释示例,以挑战不受控制的捕获场景。
translated by 谷歌翻译
隐式辐射功能作为重建和渲染3D场景的照片真实观点的强大场景表示形式出现。但是,这些表示的编辑性差。另一方面,诸如多边形网格之类的显式表示允许易于编辑,但不适合重建动态的人头中的准确细节,例如精细的面部特征,头发,牙齿,牙齿和眼睛。在这项工作中,我们提出了神经参数化(NEP),这是一种混合表示,提供了隐式和显式方法的优势。 NEP能够进行照片真实的渲染,同时允许对场景的几何形状和外观进行细粒度编辑。我们首先通过将3D几何形状参数化为2D纹理空间来解开几何形状和外观。我们通过引入显式线性变形层来启用几何编辑性。变形由一组稀疏的密钥点控制,可以明确和直观地移位以编辑几何形状。对于外观,我们开发了一个混合2D纹理,该纹理由明确的纹理图组成,以易于编辑和隐式视图以及时间相关的残差,以建模时间和视图变化。我们将我们的方法与几个重建和编辑基线进行比较。结果表明,NEP在保持高编辑性的同时达到了几乎相同的渲染精度。
translated by 谷歌翻译
在这项工作中,我们在具有稀疏相机视图的设置下,开发了一个可概括和高效的神经辐射场(nerf)管道,用于高保真自由观点人体合成。虽然现有的基于NERF的方法可以合成人体的相当逼真的细节,但是当输入具有自动闭塞时,它们往往会产生差的结果,特别是对于在稀疏视野下的看不见的人类。此外,这些方法通常需要大量的采样点进行渲染,这导致效率低,限制了其现实世界的适用性。为了解决这些挑战,我们提出了一种几何形状导向的进步nerf〜(GP-NERF)。特别地,为了更好地解决自动阻塞,我们设计了一种几何指导的多视图特征集成方法,该多视图特征集成方法在从输入视图集成不完全信息之前利用估计的几何形状,并构建目标人体的完整几何体积。同时,为了实现更高的渲染效率,我们引入了几何形状导向的渐进性渲染管线,其利用几何特征卷和预测的密度值来逐步减少采样点的数量并加快渲染过程。 ZJU-Mocap和Thuman数据集的实验表明,我们的方法在多种泛化设置上显着优于最先进的,而通过应用我们有效的渐进式渲染管道,时间成本降低> 70%。
translated by 谷歌翻译
对于场景重建和新型视图综合的数量表示形式的普及最近,人们的普及使重点放在以高视觉质量和实时为实时的体积内容动画上。尽管基于学习功能的隐性变形方法可以产生令人印象深刻的结果,但它们是艺术家和内容创建者的“黑匣子”,但它们需要大量的培训数据才能有意义地概括,并且在培训数据之外不会产生现实的外推。在这项工作中,我们通过引入实时的音量变形方法来解决这些问题,该方法是实时的,易于使用现成的软件编辑,并且可以令人信服地推断出来。为了证明我们方法的多功能性,我们将其应用于两种情况:基于物理的对象变形和触发性,其中使用Blendshapes控制着头像。我们还进行了彻底的实验,表明我们的方法与两种体积方法相比,结合了基于网格变形的隐式变形和方法。
translated by 谷歌翻译
In this paper, we take a significant step towards real-world applicability of monocular neural avatar reconstruction by contributing InstantAvatar, a system that can reconstruct human avatars from a monocular video within seconds, and these avatars can be animated and rendered at an interactive rate. To achieve this efficiency we propose a carefully designed and engineered system, that leverages emerging acceleration structures for neural fields, in combination with an efficient empty space-skipping strategy for dynamic scenes. We also contribute an efficient implementation that we will make available for research purposes. Compared to existing methods, InstantAvatar converges 130x faster and can be trained in minutes instead of hours. It achieves comparable or even better reconstruction quality and novel pose synthesis results. When given the same time budget, our method significantly outperforms SoTA methods. InstantAvatar can yield acceptable visual quality in as little as 10 seconds training time.
translated by 谷歌翻译
Existing neural rendering methods for creating human avatars typically either require dense input signals such as video or multi-view images, or leverage a learned prior from large-scale specific 3D human datasets such that reconstruction can be performed with sparse-view inputs. Most of these methods fail to achieve realistic reconstruction when only a single image is available. To enable the data-efficient creation of realistic animatable 3D humans, we propose ELICIT, a novel method for learning human-specific neural radiance fields from a single image. Inspired by the fact that humans can easily reconstruct the body geometry and infer the full-body clothing from a single image, we leverage two priors in ELICIT: 3D geometry prior and visual semantic prior. Specifically, ELICIT introduces the 3D body shape geometry prior from a skinned vertex-based template model (i.e., SMPL) and implements the visual clothing semantic prior with the CLIP-based pre-trained models. Both priors are used to jointly guide the optimization for creating plausible content in the invisible areas. In order to further improve visual details, we propose a segmentation-based sampling strategy that locally refines different parts of the avatar. Comprehensive evaluations on multiple popular benchmarks, including ZJU-MoCAP, Human3.6M, and DeepFashion, show that ELICIT has outperformed current state-of-the-art avatar creation methods when only a single image is available. Code will be public for reseach purpose at https://elicit3d.github.io .
translated by 谷歌翻译