有关后门毒物攻击的广泛文献研究了使用“数字触发图案”的后门攻击和防御措施。相比之下,“物理后门”使用物理对象作为触发器,直到最近才被确定,并且在质量上足够不同,可以抵抗针对数字触发后门的所有防御。对物理后门的研究受到了访问大型数据集的限制,该数据集包含包含与分类目标共同位置的物理对象的真实图像。构建这些数据集是时间和劳动力密集的。这项工作旨在应对有关物理后门攻击研究的可访问性挑战。我们假设在流行数据集(例如Imagenet)中可能存在天然存在的物理共同存在的对象。一旦确定,这些数据的仔细重新标记可以将它们转化为训练样本,以进行物理后门攻击。我们提出了一种方法,可以通过在现有数据集中识别这些潜在触发器的这些亚集,以及它们可能毒害的特定类别。我们称这些天然存在的触发级子集自然后门数据集。我们的技术成功地识别了广泛可用的数据集中的自然后门,并在行为上等同于在手动策划数据集中训练的模型。我们发布我们的代码,以使研究社区可以创建自己的数据集,以研究物理后门攻击。
translated by 谷歌翻译
在对抗机器学习中,防止对深度学习系统的攻击的新防御能力在释放更强大的攻击后不久就会破坏。在这种情况下,法医工具可以通过追溯成功的根本原因来为现有防御措施提供宝贵的补充,并为缓解措施提供前进的途径,以防止将来采取类似的攻击。在本文中,我们描述了我们为开发用于深度神经网络毒物攻击的法医追溯工具的努力。我们提出了一种新型的迭代聚类和修剪解决方案,该解决方案修剪了“无辜”训练样本,直到所有剩余的是一组造成攻击的中毒数据。我们的方法群群训练样本基于它们对模型参数的影响,然后使用有效的数据解读方法来修剪无辜簇。我们从经验上证明了系统对三种类型的肮脏标签(后门)毒物攻击和三种类型的清洁标签毒药攻击的功效,这些毒物跨越了计算机视觉和恶意软件分类。我们的系统在所有攻击中都达到了98.4%的精度和96.8%的召回。我们还表明,我们的系统与专门攻击它的四种抗纤维法措施相对强大。
translated by 谷歌翻译
如今,渴望数据的深神经网络(DNNS)的创建者搜索互联网训练饲料,使用户几乎无法控制或了解何时将其数据用于模型培训。为了使用户能够抵消不需要的数据使用,我们设计,实施和评估一个实用系统,该系统使用户能够检测其数据是否用于培训DNN模型。我们展示了用户如何创建我们称为同位素的特殊数据点,该数据点在培训期间将“伪造功能”引入DNN中。仅查询访问训练的模型,并且对模型培训过程不了解或对数据标签的控制,用户可以应用统计假设测试来检测模型是否通过对用户的培训进行培训来了解与其同位素相关的虚假特征数据。这有效地将DNNS对记忆和虚假相关性的脆弱性变成了数据出处的工具。我们的结果证实了在多种设置中的功效,检测并区分了数百种具有高精度的同位素。我们进一步表明,我们的系统在公共ML-AS-AS-Service平台和较大的模型(例如ImageNet)上工作,可以使用物理对象代替数字标记,并且通常对几种自适应对策保持坚固。
translated by 谷歌翻译
最近的作品表明,深度学习模型容易受到后门中毒攻击的影响,在这些攻击中,这些攻击灌输了与外部触发模式或物体(例如贴纸,太阳镜等)的虚假相关性。我们发现这种外部触发信号是不必要的,因为可以使用基于旋转的图像转换轻松插入高效的后门。我们的方法通过旋转有限数量的对象并将其标记错误来构建中毒数据集;一旦接受过培训,受害者的模型将在运行时间推理期间做出不良的预测。它表现出明显的攻击成功率,同时通过有关图像分类和对象检测任务的全面实证研究来保持清洁绩效。此外,我们评估了标准数据增强技术和针对我们的攻击的四种不同的后门防御措施,发现它们都无法作为一致的缓解方法。正如我们在图像分类和对象检测应用程序中所示,我们的攻击只能在现实世界中轻松部署在现实世界中。总体而言,我们的工作突出了一个新的,简单的,物理上可实现的,高效的矢量,用于后门攻击。我们的视频演示可在https://youtu.be/6jif8wnx34m上找到。
translated by 谷歌翻译
后门攻击已被证明是对深度学习模型的严重安全威胁,并且检测给定模型是否已成为后门成为至关重要的任务。现有的防御措施主要建立在观察到后门触发器通常尺寸很小或仅影响几个神经元激活的观察结果。但是,在许多情况下,尤其是对于高级后门攻击,违反了上述观察结果,阻碍了现有防御的性能和适用性。在本文中,我们提出了基于新观察的后门防御范围。也就是说,有效的后门攻击通常需要对中毒训练样本的高预测置信度,以确保训练有素的模型具有很高的可能性。基于此观察结果,Dtinspector首先学习一个可以改变最高信心数据的预测的补丁,然后通过检查在低信心数据上应用学习补丁后检查预测变化的比率来决定后门的存在。对五次后门攻击,四个数据集和三种高级攻击类型的广泛评估证明了拟议防御的有效性。
translated by 谷歌翻译
We conduct a systematic study of backdoor vulnerabilities in normally trained Deep Learning models. They are as dangerous as backdoors injected by data poisoning because both can be equally exploited. We leverage 20 different types of injected backdoor attacks in the literature as the guidance and study their correspondences in normally trained models, which we call natural backdoor vulnerabilities. We find that natural backdoors are widely existing, with most injected backdoor attacks having natural correspondences. We categorize these natural backdoors and propose a general detection framework. It finds 315 natural backdoors in the 56 normally trained models downloaded from the Internet, covering all the different categories, while existing scanners designed for injected backdoors can at most detect 65 backdoors. We also study the root causes and defense of natural backdoors.
translated by 谷歌翻译
后门攻击已成为深度神经网络(DNN)的主要安全威胁。虽然现有的防御方法在检测或擦除后以后展示了有希望的结果,但仍然尚不清楚是否可以设计强大的培训方法,以防止后门触发器首先注入训练的模型。在本文中,我们介绍了\ emph {反后门学习}的概念,旨在培训\ emph {Clean}模型给出了后门中毒数据。我们将整体学习过程框架作为学习\ emph {clean}和\ emph {backdoor}部分的双重任务。从这种观点来看,我们确定了两个后门攻击的固有特征,因为他们的弱点2)后门任务与特定类(后门目标类)相关联。根据这两个弱点,我们提出了一般学习计划,反后门学习(ABL),在培训期间自动防止后门攻击。 ABL引入了标准培训的两级\ EMPH {梯度上升}机制,帮助分离早期训练阶段的后台示例,2)在后续训练阶段中断后门示例和目标类之间的相关性。通过对多个基准数据集的广泛实验,针对10个最先进的攻击,我们经验证明,后卫中毒数据上的ABL培训模型实现了与纯净清洁数据训练的相同性能。代码可用于\ url {https:/github.com/boylyg/abl}。
translated by 谷歌翻译
人群计数是一项回归任务,它估计场景图像中的人数,在一系列安全至关重要的应用程序中起着至关重要的作用,例如视频监视,交通监控和流量控制。在本文中,我们研究了基于深度学习的人群计数模型对后门攻击的脆弱性,这是对深度学习的主要安全威胁。后门攻击者通过数据中毒将后门触发植入目标模型,以控制测试时间的预测。与已经开发和测试的大多数现有后门攻击的图像分类模型不同,人群计数模型是输出多维密度图的回归模型,因此需要不同的技术来操纵。在本文中,我们提出了两次新颖的密度操纵后门攻击(DMBA $^{ - } $和DMBA $^{+} $),以攻击模型以产生任意的大或小密度估计。实验结果证明了我们对五个经典人群计数模型和四种类型数据集的DMBA攻击的有效性。我们还深入分析了后门人群计数模型的独特挑战,并揭示了有效攻击的两个关键要素:1)完整而密集的触发器以及2)操纵地面真相计数或密度图。我们的工作可以帮助评估人群计数模型对潜在后门攻击的脆弱性。
translated by 谷歌翻译
现代自动驾驶汽车采用最先进的DNN模型来解释传感器数据并感知环境。但是,DNN模型容易受到不同类型的对抗攻击的影响,这对车辆和乘客的安全性和安全性构成了重大风险。一个突出的威胁是后门攻击,对手可以通过中毒训练样本来妥协DNN模型。尽管已经大量精力致力于调查后门攻击对传统的计算机视觉任务,但很少探索其对自主驾驶场景的实用性和适用性,尤其是在物理世界中。在本文中,我们针对车道检测系统,该系统是许多自动驾驶任务,例如导航,车道切换的必不可少的模块。我们设计并实现了对此类系统的第一次物理后门攻击。我们的攻击是针对不同类型的车道检测算法的全面有效的。具体而言,我们引入了两种攻击方法(毒药和清洁量)来生成中毒样本。使用这些样品,训练有素的车道检测模型将被后门感染,并且可以通过公共物体(例如,交通锥)进行启动,以进行错误的检测,导致车辆从道路上或在相反的车道上行驶。对公共数据集和物理自动驾驶汽车的广泛评估表明,我们的后门攻击对各种防御解决方案都是有效,隐秘和强大的。我们的代码和实验视频可以在https://sites.google.com/view/lane-detection-attack/lda中找到。
translated by 谷歌翻译
在这项工作中,我们向图形神经网络(GNN)提出了第一个后门攻击。具体而言,我们向GNN提出一个\ emph {子画面的后门攻击},用于图表分类。在我们的后门攻击中,一旦预定义的子图注入测试图,GNN分类器就预测测试图的攻击者所选择的目标标签。我们在三个真实世界图数据集上的经验结果表明,我们的后门攻击对GNN的预测准确性的影响很小,对清洁测试图进行了很小影响。此外,我们概括了基于随机的平滑的认证防御来防御我们的后门攻击。我们的经验结果表明,在某些情况下,防御是有效的,但在其他情况下无效,突出了我们的后门攻击的新防御的需求。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
深度神经网络(DNNS)在训练过程中容易受到后门攻击的影响。该模型以这种方式损坏正常起作用,但是当输入中的某些模式触发时,会产生预定义的目标标签。现有防御通常依赖于通用后门设置的假设,其中有毒样品共享相同的均匀扳机。但是,最近的高级后门攻击表明,这种假设在动态后门中不再有效,在动态后门中,触发者因输入而异,从而击败了现有的防御。在这项工作中,我们提出了一种新颖的技术BEATRIX(通过革兰氏矩阵检测)。 BEATRIX利用革兰氏矩阵不仅捕获特征相关性,还可以捕获表示形式的适当高阶信息。通过从正常样本的激活模式中学习类条件统计,BEATRIX可以通过捕获激活模式中的异常来识别中毒样品。为了进一步提高识别目标标签的性能,BEATRIX利用基于内核的测试,而无需对表示分布进行任何先前的假设。我们通过与最先进的防御技术进行了广泛的评估和比较来证明我们的方法的有效性。实验结果表明,我们的方法在检测动态后门时达到了91.1%的F1得分,而最新技术只能达到36.9%。
translated by 谷歌翻译
与令人印象深刻的进步触动了我们社会的各个方面,基于深度神经网络(DNN)的AI技术正在带来越来越多的安全问题。虽然在考试时间运行的攻击垄断了研究人员的初始关注,但是通过干扰培训过程来利用破坏DNN模型的可能性,代表了破坏训练过程的可能性,这是破坏AI技术的可靠性的进一步严重威胁。在后门攻击中,攻击者损坏了培训数据,以便在测试时间诱导错误的行为。然而,测试时间误差仅在存在与正确制作的输入样本对应的触发事件的情况下被激活。通过这种方式,损坏的网络继续正常输入的预期工作,并且只有当攻击者决定激活网络内隐藏的后门时,才会发生恶意行为。在过去几年中,后门攻击一直是强烈的研究活动的主题,重点是新的攻击阶段的发展,以及可能对策的提议。此概述文件的目标是审查发表的作品,直到现在,分类到目前为止提出的不同类型的攻击和防御。指导分析的分类基于攻击者对培训过程的控制量,以及防御者验证用于培训的数据的完整性,并监控DNN在培训和测试中的操作时间。因此,拟议的分析特别适合于参考他们在运营的应用方案的攻击和防御的强度和弱点。
translated by 谷歌翻译
A recent trojan attack on deep neural network (DNN) models is one insidious variant of data poisoning attacks. Trojan attacks exploit an effective backdoor created in a DNN model by leveraging the difficulty in interpretability of the learned model to misclassify any inputs signed with the attacker's chosen trojan trigger. Since the trojan trigger is a secret guarded and exploited by the attacker, detecting such trojan inputs is a challenge, especially at run-time when models are in active operation. This work builds STRong Intentional Perturbation (STRIP) based run-time trojan attack detection system and focuses on vision system. We intentionally perturb the incoming input, for instance by superimposing various image patterns, and observe the randomness of predicted classes for perturbed inputs from a given deployed model-malicious or benign. A low entropy in predicted classes violates the input-dependence property of a benign model and implies the presence of a malicious input-a characteristic of a trojaned input. The high efficacy of our method is validated through case studies on three popular and contrasting datasets: MNIST, CIFAR10 and GTSRB. We achieve an overall false acceptance rate (FAR) of less than 1%, given a preset false rejection rate (FRR) of 1%, for different types of triggers. Using CIFAR10 and GTSRB, we have empirically achieved result of 0% for both FRR and FAR. We have also evaluated STRIP robustness against a number of trojan attack variants and adaptive attacks.
translated by 谷歌翻译
最近的研究表明,深层神经网络容易受到不同类型的攻击,例如对抗性攻击,数据中毒攻击和后门攻击。其中,后门攻击是最狡猾的攻击,几乎可以在深度学习管道的每个阶段发生。因此,后门攻击吸引了学术界和行业的许多兴趣。但是,大多数现有的后门攻击方法对于某些轻松的预处理(例如常见数据转换)都是可见的或脆弱的。为了解决这些限制,我们提出了一种强大而无形的后门攻击,称为“毒药”。具体而言,我们首先利用图像结构作为目标中毒区域,并用毒药(信息)填充它们以生成触发图案。由于图像结构可以在数据转换期间保持其语义含义,因此这种触发模式对数据转换本质上是强大的。然后,我们利用深度注射网络将这种触发模式嵌入封面图像中,以达到隐身性。与现有流行的后门攻击方法相比,毒药的墨水在隐形和健壮性方面都优于表现。通过广泛的实验,我们证明了毒药不仅是不同数据集和网络体系结构的一般性,而且对于不同的攻击场景也很灵活。此外,它对许多最先进的防御技术也具有非常强烈的抵抗力。
translated by 谷歌翻译
后门攻击已被证明是对深度学习系统的严重威胁,如生物识别认证和自主驾驶。有效的后门攻击可以在某些预定义条件下执行模型行为,即,触发器,但否则正常表现。然而,现有攻击的触发器直接注入像素空间,这往往可通过现有的防御和在训练和推理阶段进行视觉识别。在本文中,我们通过Trojaning频域提出了一个新的后门攻击ftrojan。关键的直觉是频域中的触发扰动对应于分散整个图像的小像素明智的扰动,打破了现有防御的底层假设,并使中毒图像从清洁的假设可视地无法区分。我们在几个数据集和任务中评估ftrojan,表明它实现了高攻击成功率,而不会显着降低良性输入的预测准确性。此外,中毒图像几乎看不见并保持高感性的质量。我们还评估FTROJAN,以防止最先进的防御以及在频域中设计的若干自适应防御。结果表明,FTROJAN可以强大地避开或显着降解这些防御的性能。
translated by 谷歌翻译
AI安全社区的一个主要目标是为现实世界应用安全可靠地生产和部署深入学习模型。为此,近年来,在生产阶段(或培训阶段)和相应的防御中,基于数据中毒基于深度神经网络(DNN)的后门攻击以及相应的防御。具有讽刺意味的是,部署阶段的后门攻击,这些攻击通常可以在不专业用户的设备中发生,因此可以说是在现实世界的情景中威胁要威胁,得以更少的关注社区。我们将这种警惕的不平衡归因于现有部署阶段后门攻击算法的弱实用性以及现实世界攻击示范的不足。为了填补空白,在这项工作中,我们研究了对DNN的部署阶段后门攻击的现实威胁。我们基于普通使用的部署阶段攻击范式 - 对抗对抗权重攻击的研究,主体选择性地修改模型权重,以将后台嵌入到部署的DNN中。为了实现现实的实用性,我们提出了第一款灰度盒和物理可实现的重量攻击算法,即替换注射,即子网替换攻击(SRA),只需要受害者模型的架构信息,并且可以支持现实世界中的物理触发器。进行了广泛的实验模拟和系统级真实的世界攻击示范。我们的结果不仅提出了所提出的攻击算法的有效性和实用性,还揭示了一种新型计算机病毒的实际风险,这些计算机病毒可能会广泛传播和悄悄地将后门注入用户设备中的DNN模型。通过我们的研究,我们要求更多地关注DNN在部署阶段的脆弱性。
translated by 谷歌翻译
后门深度学习(DL)模型的行为通常在清洁输入上,但在触发器输入时不端行为,因为后门攻击者希望为DL模型部署构成严重后果。最先进的防御是限于特定的后门攻击(源无关攻击)或在该机器学习(ML)专业知识或昂贵的计算资源中不适用于源友好的攻击。这项工作观察到所有现有的后门攻击都具有不可避免的内在弱点,不可转换性,即触发器输入劫持劫持模型,但不能对另一个尚未植入同一后门的模型有效。通过此密钥观察,我们提出了不可转换性的反向检测(NTD)来识别运行时在运行时的模型欠测试(MUT)的触发输入。特定,NTD允许潜在的回溯静电预测输入的类别。同时,NTD利用特征提取器(FE)来提取输入的特征向量,并且从其预测类随机拾取的一组样本,然后比较FE潜在空间中的输入和样本之间的相似性。如果相似性低,则输入是对逆势触发输入;否则,良性。 FE是一个免费的预训练模型,私下从开放平台保留。随着FE和MUT来自不同来源,攻击者非常不可能将相同的后门插入其中两者。由于不可转换性,不能将突变处工作的触发效果转移到FE,使NTD对不同类型的后门攻击有效。我们在三个流行的定制任务中评估NTD,如面部识别,交通标志识别和一般动物分类,结果确认NDT具有高效率(低假验收率)和具有低检测延迟的可用性(低误报率)。
translated by 谷歌翻译
Deep neural networks (DNNs) provide excellent performance across a wide range of classification tasks, but their training requires high computational resources and is often outsourced to third parties. Recent work has shown that outsourced training introduces the risk that a malicious trainer will return a backdoored DNN that behaves normally on most inputs but causes targeted misclassifications or degrades the accuracy of the network when a trigger known only to the attacker is present. In this paper, we provide the first effective defenses against backdoor attacks on DNNs. We implement three backdoor attacks from prior work and use them to investigate two promising defenses, pruning and fine-tuning. We show that neither, by itself, is sufficient to defend against sophisticated attackers. We then evaluate fine-pruning, a combination of pruning and fine-tuning, and show that it successfully weakens or even eliminates the backdoors, i.e., in some cases reducing the attack success rate to 0% with only a 0.4% drop in accuracy for clean (non-triggering) inputs. Our work provides the first step toward defenses against backdoor attacks in deep neural networks.
translated by 谷歌翻译
Backdoor attacks represent one of the major threats to machine learning models. Various efforts have been made to mitigate backdoors. However, existing defenses have become increasingly complex and often require high computational resources or may also jeopardize models' utility. In this work, we show that fine-tuning, one of the most common and easy-to-adopt machine learning training operations, can effectively remove backdoors from machine learning models while maintaining high model utility. Extensive experiments over three machine learning paradigms show that fine-tuning and our newly proposed super-fine-tuning achieve strong defense performance. Furthermore, we coin a new term, namely backdoor sequela, to measure the changes in model vulnerabilities to other attacks before and after the backdoor has been removed. Empirical evaluation shows that, compared to other defense methods, super-fine-tuning leaves limited backdoor sequela. We hope our results can help machine learning model owners better protect their models from backdoor threats. Also, it calls for the design of more advanced attacks in order to comprehensively assess machine learning models' backdoor vulnerabilities.
translated by 谷歌翻译